首页  软件  游戏  图书  电影  电视剧

请输入您要查询的图书:

 

图书 复变函数引论(第2版普通高等院校规划教材)
内容
编辑推荐

曹怀信编著的《复变函数引论(第2版)》简介:For several years, I have been conducting courses in Complex Analysis, Real Analysis and Functional Analysis in a so-called "bilingual" way. That is, the lessons are given with Chinese textbooks, but mainly teached in English. The main purpose of teaching in this way is to improve the undergraduate students' ability to read and write English. Using a Chinese textbook in such "bilingual" courses is not, however, useful for training students' ability of English-thinking. Consequently, although there are a number of books on complex analysis in Chinese, in order to meet the requirements of bilingual teaching, it is necessary to write a textbook on complex analysis in English for Chinese undergraduate students. This is just the main aim of compiling the present book.

目录

Preface

Chapter Ⅰ Complex Number Field

1.1 Sums and Products

1.2 Basic Algebraic Properties

1.3 Further Properties

1.4 Moduli

1.5 Conjugates

1.6 Exponential Form

1.7 Products and Quotients in Exponential Form

1.8 Roots of Complex Numbers

1.9 Examples

1.10 Regions in the Complex Plane

Chapter Ⅱ Analytic Functions

2.1 Functions of a Complex Variable

2.2 Mappings

2.3 The Exponential Function and its Mapping Properties

2.4 Limits

2.5 Theorems on Limits

2.6 Limits Involving the Point at Infinity

2.7 Continuity

2.8 Derivatives

2.9 Differentiation Formulas

2.10 Cauchy-Riemann Equations

2.11 Necessary and Sufficient Conditions for Differentiability

2.12 Polar Coordinates

2.13 Analytic Functions

2.14 Examples

215 Harmonic Functions

Chapter Ⅲ Elementary Functions

3.1 The Exponential Function

3.2 The Logarithmic Function

3.3 Branches and Derivatives of Logarithms

3.4 Some Identities on Logarithms

3.5 Complex Power Functions

36 Trigonometric Functions

3.7 Hyperbolic Functions

3.8 Inverse Trigonometric and Hyperbolic Functions

Chapter Ⅳ Integrals

4.1 Derivatives of Complex-Valued Functions of One Real Variable

4.2 Definite Integrals of Functions W

4.3 Paths

4.4 Path Integrals

4.5 Examples

4.6 Upper Bounds for Integrals

4.7 Primitive Functions

4.8 Examples

4.9 Cauchy Integral Theorem

4.10 Proof of the Cauchy Integral Theorem

4.11 Extended Cauchy Integral Theorem

4.12 Cauchy Integral Formula

4.13 Derivatives of Analytic Functions

4.14 Liouville's Theorem

4.15 Maximum Modulus Principle

Chapter Ⅴ Series

5.1 Convergence of Series

5.2 Taylor Series

5.3 Examples

5.4 Laurent Series

5.5 Examples

5.6 Absolute and Uniform Convergence of Power Series

5.7 Continuity of Sums of Power Series

5.8 Integration and Differentiation of Power Series

5.9 Uniqueness of Series Representations

5.10 Multiplication and Division of Power Series

Chapter Ⅵ Residues and Poles

6.1 Residues

6.2 Cauchy's Residue Theorem

6.3 Using a Single Residue

6.4 The Three Types of Isolated Singular Points

6.5 Residues at poles

6.6 Examples

6.7 Zeros of Analytic Functions

6.8 Uniquely Determined Analytic Functions

6.9 Zeros and Poles

6.10 Behavior of f Near Isolated Singular Points

6.11 Reflection Principle

Chapter Ⅶ Applications of Residues

7 I Evaluation of Improper Integrals

7.2 Examples

7.3 Improper Integrals From Fourier Analysis

7.4 Jordan's Lemma

7.5 Indented Paths

7.6 An Indentation Around a Branch Point

7.7 Definite Integrals Involving Sine and Cosine

7.8 Argument Principle

7.9 Rouche's Theorem

Chapter Ⅷ Conformal Mappings

8.1 Conformal mappings

82 Unilateral Functions

8.3 Local Inverses

84 Affine Transformations

85 The Transformation W = 1/z

8.6 Mappings by 1/z

8.7 Fractional Linear Transformations

8.8 Cross Ratios

8.9 Mappings of the Upper Half Plane

标签
缩略图
书名 复变函数引论(第2版普通高等院校规划教材)
副书名
原作名
作者 曹怀信
译者
编者
绘者
出版社 陕西师范大学出版总社有限公司
商品编码(ISBN) 9787561369104
开本 16开
页数 306
版次 2
装订 平装
字数 315
出版时间 2013-01-01
首版时间 2013-01-01
印刷时间 2014-08-01
正文语种
读者对象 普通青少年,普通成人
适用范围
发行范围 公开发行
发行模式 实体书
首发网站
连载网址
图书大类 科学技术-自然科学-数学
图书小类
重量 0.376
CIP核字
中图分类号 O174.5
丛书名
印张 19.5
印次 2
出版地 陕西
230
168
12
整理
媒质 图书
用纸 普通纸
是否注音
影印版本 原版
出版商国别 CN
是否套装 单册
著作权合同登记号
版权提供者
定价
印数
出品方
作品荣誉
主角
配角
其他角色
一句话简介
立意
作品视角
所属系列
文章进度
内容简介
作者简介
目录
文摘
安全警示 适度休息有益身心健康,请勿长期沉迷于阅读小说。
随便看

 

兰台网图书档案馆全面收录古今中外各种图书,详细介绍图书的基本信息及目录、摘要等图书资料。

 

Copyright © 2004-2025 xlantai.com All Rights Reserved
更新时间:2025/5/16 16:39:13