首页  软件  游戏  图书  电影  电视剧

请输入您要查询的图书:

 

图书 应用预测建模(英文版)
内容
内容推荐
本书是一部关于数据分析的经典教材,聚焦预测建模的实际应用,如如何进行数据预处理、模型调优、预测变量重要性度量、变量选择等。读者可以从中学到许多建模方法以及提高对许多常用的、现代的有效模型的认识,如线性回归、非线性回归和分类模型,涉及树方法、支持向量机等。书中还涉及从数据预处理到建模再到模型评估和选择的整个过程,以及背后的统计思想,涉及各种回归技术和分类技术。
目录
1 Introduction
1.1 Prediction Versus Interpretation
1.2 Key Ingredients of Predictive Models
1.3 Terminology
1.4 Example Data Sets and Typical Data Scenarios
1.5 Overview
1.6 Notation
Part Ⅰ General Strategies
2 A Short Tour of the Predictive Modeling Process
2.1 Case Study:Predicting Fuel Economy
2.2 Themes
2.3 Summary
3 Data Pre-processing
3.1 Case Study:Cell Segmentation in High-Content Screening
3.2 Data Transformations for Individual Predictors
3.3 Data Transformations for Multiple Predictors
3.4 Dealing with Missing Values
3.5 Removing Predictors
3.6 Adding Predictors
3.7 Binning Predictors
3.8 Computing
Exercises
4 Over-Fitting and Model Tuning
4.1 The Problem of Over-Fitting
4.2 Model Tuning
4.3 Data Splitting
4.4 Resampling Techniques
4.5 Case Study:Credit Scoring
4.6 Choosing Final Tuning Parameters
4.7 Data Splitting Recommendations
4.8 Choosing Between Models
4.9 Computing
Exercises
Part Ⅱ Regression Models
5 Measuring Performance in Regression Models
5.1 Quantitative Measures of Performance
5.2 The Variance-Bias Trade-off
5.3 Computing
6 Linear Regression and Its Cousins
6.1 Case Study:Quantitative Structure-Activity Relationshir Modeling
6.2 Linear Regression
6.3 Partial Least Squares
6.4 Penalized Models
6.5 Computing
Exercises
7 Nonlinear Regression Models
7.1 Neural Networks
7.2 Multivariate Adaptive Regression Splines
7.3 Support Vector Machines
7.4 K-Nearest Neighbors
7.5 Computing
Exercises
8 Regression Trees and Rule-Based Models
8.1 Basic Regression Trees
8.2 Regression Model Trees
8.3 Rule-Based Models
8.4 Bagged Trees
8.5 Random Forests
8.6 Boosting
8.7 Cubist
8.8 Computing
Exercises
9 A Summary of Solubility Models
10 Case Study:Compressive Strength of Concrete Mixtures
10.1 Model Building Strategy
10.2 Model Performance
10.3 Optimizing Compressive Strength
10.4 Computing
Part Ⅲ Classification Models
11 Measuring Performance in Classification Models
11.1 Class Predictions
11.2 Evaluating Predicted Classes
11.3 Evaluating Class Probabilities
11.4 Computing
12 Discriminant Analysis and Other Linear Classification Models
12.1 Case Study:Predicting Successful Grant Applications
12.2 Logistic Regression
12.3 Linear Discriminant Analysis
12.4 Partial Least Squares Discriminant Analysis
12.5 Penalized Models
12.6 Nearest Shrunken Centroids
12.7 Computing
Exercises
13 Nonlinear Classification Models
13.1 Nonlinear Discriminant Analysis
13.2 Neural Networks
13.3 Flexible Discriminant Analysis
13.4 Support Vector Machines
13.5 K-Nearest Neighbors
13.6 Naive Bayes
13.7 Computing
Exercises
14 Classification Trees and Rule-Based Models
14.1 Basic Classification Trees
14.2 Rule-Based Models
14.3 Bagged Trees
14.4 Random Forests
14.5 Boosting
14.6 C5.0
14.7 Comparing Two Encodings of Categorical Predictors
14.8 Computing
Exercises
15 A Summary of Grant Application Models
16 Remedies for Severe Class Imbalance
16.1 Case Study:Predicting Caravan Policy Ownership
16.2 The Effect of Class Imbalance
16.3 Model Tuning
16.4 Alternate Cutoffs
16.5 Adjusting Prior Probabilities
16.6 Unequal Case Weights
16.7 Sampling Methods
16.8 Cost-Sensitive Training
16.9 Computing
Exercises
17 Case Study:Job Scheduling
17.1 Data Splitting and Model Strategy
17.2 Results
17.3 Computing
Part Ⅳ Other Considerations
18 Measuring Predictor Importance
18.1 Numeric Outcomes
18.2 Categorical Outcomes
18.3 Other Approaches
18.4 Computing
Exercises
19 An Introduction to Feature Selection
……
标签
缩略图
书名 应用预测建模(英文版)
副书名
原作名
作者 (美)M.库恩//K.约翰逊
译者
编者
绘者
出版社 世界图书出版公司
商品编码(ISBN) 9787519220891
开本 24开
页数 600
版次 1
装订 平装
字数 499
出版时间 2017-06-01
首版时间 2017-06-01
印刷时间 2020-08-01
正文语种
读者对象
适用范围
发行范围 公开发行
发行模式 实体书
首发网站
连载网址
图书大类 科学技术-自然科学-数学
图书小类
重量 718
CIP核字 2016271804
中图分类号 O2
丛书名
印张 26
印次 2
出版地 广东
整理
媒质
用纸
是否注音
影印版本
出版商国别
是否套装
著作权合同登记号
版权提供者
定价
印数
出品方
作品荣誉
主角
配角
其他角色
一句话简介
立意
作品视角
所属系列
文章进度
内容简介
作者简介
目录
文摘
安全警示 适度休息有益身心健康,请勿长期沉迷于阅读小说。
随便看

 

兰台网图书档案馆全面收录古今中外各种图书,详细介绍图书的基本信息及目录、摘要等图书资料。

 

Copyright © 2004-2025 xlantai.com All Rights Reserved
更新时间:2025/5/11 5:36:40