图书 | 金融数学中的带跳随机微分方程数值解 |
内容 | 内容推荐 《金融数学中的带跳随机微分方程数值解》主要阐述Wiener和Possion过程或者Possion跳度形成的随机微分方程的离散时间分散值的设计和分析。在金融和精算模型中及其他应用领域,这样的跳跃扩散常被用来描述不同状态变量的动态。在金融领域,这些可能代表资产价格,信用等级,股票指数,利率,外汇汇率或商品价格。本书主要介绍离散随机方程的近似离散值解的有效性和数值稳定性。 作者简介 Eckhard Platen , Nicola Bruti-Liberati都是澳大利亚的金融统计领域的学者。 目录 Preface Suggestions for the Reader Basic Notation Motivation and Brief Survey 1 Stochastic Differential Equations with Jumps 1.1 Stochastic Processes 1.2 Supermartingales and Martingajes 1.3 Quadratic Variation and Covariation 1.4 Ito Integral 1.5 Ito Formula 1.6 Stochastic Differential Equations 1.7 Linear SDEs 1.8 SDEs with Jumps 1.9 Existence and Uniqueness of Solutions of SDEs 1.10 Exercises 2 Exact Simulation of Solutions of SDEs 2.1 Motivation of Exact Simulation 2.2 Sampling from Transition Distributions 2.3 Exact Solutions of Multi—dimensional SDEs 24 Functions of Exact Solutions 2.5 Almost Exact Solutions by Conditioning 2.6 Almost Exact Simulation by Time Change 2.7 Functionals of Solutions of SDEs 2.8 Exercises 3 Benchmark Approach to Finance and Insurance 3.1 Market Model 3.2 Best Performing Portfolio 3.3 Supermartingale Property and Pricing 3.4 Diversification 3.5 Real World Pricing Under Some Models 3.6 Real World Pricing Under the MMM 3.7 Binomial Option Pricing 3.8 Exercises 4 Stochastic Expansions 4.1 Introduction to Wagner—Platen Expansions 4.2 Multiple Stochastic Integrals 4.3 Coefficient Functions 4.4 Wagner—Platen Expansions 4.5 Moments of Multiple Stochastic Integrals 4.6 Exercises 5 Introduction to Scenario Simulation 5.1 Approximating Solutions of ODEs 5.2 Scenario Simulation 5.3 Strong Taylor Schemes 5.4 Derivative—Free Strong Schemes 5.5 Exercises 6 Regular Strong Taylor Approximations with Jumps 6.1 Discrete—Time Approximation 6.2 Strong Order 1.0 Taylor Scheme 6.3 Conunutativity Conditions 6.4 Convergence Results 6.5 Lemma on Multiple Ito Integrals 6.6 Proof of the Convergence Theorem 6.7 Exercises 7 Regular Strong Ito Approximations 7.1 Explicit Regular Strong Schemes 7.2 Drift—Implicit Schemes 7.3 Balanced Implicit Methods 7.4 Predictor—Corrector Schemes 7.5 Convergence Results 7.6 Exercises 8 Jump—Adapted Strong Approximations 8.1 Introduction to Jump—Adapted Approximations 8.2 Jump—Adapted Strong Taylor Schemes 8.3 Jump—Adapted Derivative—Free Strong Schemes 8.4 Jump—Adapted Drift—Implicit Schemes 8.5 Predictor—Corrector Strong Schemes 8.6 Jump—Adapted Exact Simulation 8.7 Convergence Results 8.8 Numerical Results on Strong Schemes 8.9 Approximation of Pure Jump Processes 8.10 Exercises 9 Estimating Discretely Observed Diffusions 9.1 Maximum Likelihood Estimation 9.2 Discretization of Estimators 9.3 Transform Functions for Diffusions 9.4 Estimation of Affine Diffusions 9.5 Asymptotics of Estimating Functions 9.6 Estimating Jump Diffusions 9.7 Exercises 10 Filtering 10.1 Kalman—Bucy Filter 10.2 Hidden Markov Chain Filters 10.3 Filtering a Mean Reverting Process 10.4 Balanced Method in Filtering 10.5 A Benchmark Approach to Filtering in Finance 10.6 Exercises 11 Monte Carlo Simulation of SDEs 11.1 Introduction to Monte Carlo Simulation 11.2 Weak Taylor Schemes 11.3 Derivative—Free Weak Approximations 11.4 Extrapolation Methods 11.5 Implicit and Predictor—Corrector Methods 11.6 Exercises 12 Regular Weak Taylor Approximations 12.1 Weak Taylor Schemes 12.2 Commutativity Conditions 12.3 Convergence Results 12.4 Exercises 13 Jump—Adapted Weak Approximations 13.1 Jump—Adapted Weak Schemes 13.2 Derivative—Free Schemes 13.3 Predictor—Corrector Schemes 13.4 Some Jump—Adapted Exact Weak Schemes 13.5 Convergence of Jump—Adapted Weak Taylor Schemes 13.6 Convergence of Jump—Adapted Weak Schemes 13.7 Numerical Results on Weak Schemes 13.8 Exercises 14 Numerical Stability 14.1 Asymptotic p—Stability 14.2 Stability of Predictor—Corrector Methods 14.3 Stability of Some Implicit Methods 14.4 Stability of Simplified Schemes 14.5 Exercises 15 Martingale Representations and Hedge Ratios 15.1 General Contingent Claim Pricing 15.2 Hedge Ratios for One—dimensional Processes 15.3 Explicit Hedge Ratios 15.4 Martingale R,epresentation for Non—Smooth Payoffs 15.5 Absolutely Continuous Payoff Functions 15.6 Maximum of Several Assets 15.7 Hedge Ratios for Lookback Options 15.8 Exercises 16 Variance Reduction Techniques 16.1 Various Variance Reduction Methods 16.2 Measure Transformation Techniques 16.3 Discrete—Time Variance Reduced Estimators 16.4 Control Variates 16.5 HP Variance Reduction 16.6 Exercises 17 Trees and Markov Chain Approxirnations 17.1 Numerical Effects of Tree Methods 17.2 Efficiency of Simplified Schemes 17.3 Higher Order Markov Chain Approximations 17.4 Finite Difference Methods 17.5 ConvergenCP, Theorem for Markov Chains 17.6 Exercises 18 Solutions for Exercises Acknowledgements Bibliographical Notes References Author Index Index |
标签 | |
缩略图 | ![]() |
书名 | 金融数学中的带跳随机微分方程数值解 |
副书名 | |
原作名 | |
作者 | (澳)普兰顿//(澳)利伯蒂-布鲁迪 |
译者 | |
编者 | |
绘者 | |
出版社 | 世界图书出版公司 |
商品编码(ISBN) | 9787510071188 |
开本 | 24开 |
页数 | 888 |
版次 | 1 |
装订 | 平装 |
字数 | 710 |
出版时间 | 2017-01-01 |
首版时间 | 2017-01 |
印刷时间 | 2017-01 |
正文语种 | 英 |
读者对象 | 本科及以上 |
适用范围 | |
发行范围 | 公开发行 |
发行模式 | 实体书 |
首发网站 | |
连载网址 | |
图书大类 | 科学技术-自然科学-数学 |
图书小类 | |
重量 | 1048 |
CIP核字 | 2016212391 |
中图分类号 | O211.63 |
丛书名 | |
印张 | 37 |
印次 | 1 |
出版地 | 北京 |
长 | 223 |
宽 | 149 |
高 | 38 |
整理 | |
媒质 | 图书 |
用纸 | 普通纸 |
是否注音 | 否 |
影印版本 | 原版 |
出版商国别 | CN |
是否套装 | |
著作权合同登记号 | |
版权提供者 | |
定价 | |
印数 | |
出品方 | |
作品荣誉 | |
主角 | |
配角 | |
其他角色 | |
一句话简介 | |
立意 | |
作品视角 | |
所属系列 | |
文章进度 | |
内容简介 | |
作者简介 | |
目录 | |
文摘 | |
安全警示 | 适度休息有益身心健康,请勿长期沉迷于阅读小说。 |
随便看 |
|
兰台网图书档案馆全面收录古今中外各种图书,详细介绍图书的基本信息及目录、摘要等图书资料。