首页  软件  游戏  图书  电影  电视剧

请输入您要查询的图书:

 

图书 深度学习理论与实战
内容
作者简介
李理,毕业于北京大学,研究方向为自然语言处理,有十多年自然语言处理和人工智能研发经验,先后在去哪儿网、百度和出门问问等企业工作,从事过分布式爬虫、搜索引擎、广告系统,主持研发过多款智能硬件的问答和对话系统。现在是环信人工智能研发中心的VP,负责环信中文语义分析开放平台和环信智能机器人的设计与研发。目前他致力于语音识别、自然语言处理等人工智能技术在企业中的推广和落地,以提高企业服务的水平和效率。
目录
目录
第 1 章 人工智能的基本概念 1
1.1 人工智能的发展历史 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 机器学习 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 常见的监督学习模型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 衡量指标 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.5 损失函数 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.6 优化 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.7 过拟合 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.8 机器学习示例:线性回归 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
第 2 章 神经网络 27
2.1 手写数字识别问题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2 单个神经元和多层神经网络 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.3 用代码实战多层神经网络 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.4 多层神经网络构建代码解析 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.5 反向传播算法的推导 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.6 代码实现反向传播算法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.7 为什么反向传播算法是一个高效的算法 . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.8 优化技巧 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
第 3 章 卷积神经网络 59
3.1 卷积神经网络简介 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.2 局部感知域 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.3 特征映射 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.4 池化 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.5 构建完整的卷积神经网络 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.6 填充和步长 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.7 CNN 识别 MNIST 手写数字 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.8 CNN 模型识别 CIFAR-10 图像 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.9 使用残差网络识别 MNIST 图像 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
第 4 章 循环神经网络 101
4.1 基本概念 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.2 RNN 的扩展 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.3 Word Embedding 简介 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.4 姓名分类 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.5 RNN 生成莎士比亚风格句子 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
4.6 机器翻译 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
4.7 汉语―英语翻译的批量训练 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
第 5 章 生成对抗网络 156
5.1 为什么研究生成模型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
5.2 生成模型的原理以及 GAN 与其他生成模型的区别 . . . . . . . . . . . . . . . . . . . 159
5.3 GAN 的原理 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
5.4 深度卷积生成对抗网络 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
5.5 反卷积 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
5.6 DCGAN 实战 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
第 6 章 TensorFlow 196
6.1 TensorFlow 简介 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
6.2 Opitimizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
6.3 数据的处理和输入 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
6.4 常见网络结构 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
6.5 RNN 在 TensorFlow 中的实现 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
6.6 TensorBoard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276
6.7 高层 API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
6.8 调试 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309
6.9 TensorFlow Serving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316
第 7 章 PyTorch 343
7.1 基础知识 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343
7.2 PyTorch 神经网络简介 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350
7.3 训练一个分类器 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354
7.4 使用 NumPy 实现三层神经网络 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363
7.5 使用 Tensor 实现三层神经网络 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364
7.6 使用 autograd 实现三层神经网络 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365
7.7 使用自定义的 ReLU 函数 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367
7.8 和 TensorFlow 的对比 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369
7.9 使用 nn 模块实现三层神经网络 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370
7.10 使用 optim 包 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372
7.11 自定义 nn 模块 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373
7.12 流程控制和参数共享 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374
7.13 迁移学习示例 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375
7.14 数据的加载和预处理 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382
第 8 章 Keras 393
8.1 Keras 简介 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393
8.2 Hello World . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393
8.3 Sequential API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395
8.4 多分类 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398
8.5 两分类 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400
8.6 1D 卷积进行序列分类 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400
8.7 多层 LSTM 序列分类 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402
8.8 有状态的 LSTM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404
8.9 Functional API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405
8.10 判断两个数字是否是同一个数字 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410
8.11 图片问答 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411
8.12 视频问答 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413
内容推荐
本书不仅包含人工智能、机器学习及深度学习的基础知识,如卷积神经网络、循环神经网络、生成对抗网络等,而且也囊括了学会使用TensorFlow、PyTorch和Keras这三个主流的深度学习框架的最小知识量;不仅有针对相关理论的深入解释,而且也有实用的技巧,包括常见的优化技巧、使
标签
缩略图
书名 深度学习理论与实战
副书名
原作名
作者 李理编
译者
编者 编者:李理
绘者
出版社 电子工业出版社
商品编码(ISBN) 9787121365362
开本 24cm
页数 424
版次 1
装订 平装
字数 537千字
出版时间 2019-06-01
首版时间 2019-06-01
印刷时间 2019-07-01
正文语种 CHI
读者对象 机器学习者
适用范围
发行范围 公开发行
发行模式 实体书
首发网站
连载网址
图书大类 教育考试-考试-计算机类
图书小类
重量 764
CIP核字 2019092406
中图分类号 TP181
丛书名
印张 26.5
印次 1
出版地 北京
234
185
23
整理
媒质
用纸
是否注音
影印版本
出版商国别 CN
是否套装
著作权合同登记号
版权提供者
定价 109.00
印数
出品方
作品荣誉
主角
配角
其他角色
一句话简介
立意
作品视角
所属系列
文章进度
内容简介
作者简介
目录
文摘
安全警示 适度休息有益身心健康,请勿长期沉迷于阅读小说。
随便看

 

兰台网图书档案馆全面收录古今中外各种图书,详细介绍图书的基本信息及目录、摘要等图书资料。

 

Copyright © 2004-2025 xlantai.com All Rights Reserved
更新时间:2025/5/11 22:07:43