首页  软件  游戏  图书  电影  电视剧

请输入您要查询的图书:

 

图书 数学分析讲义(第3册)
内容
目录
致读者
2章 曲线积分、曲面积分与场论初步
§12.1 型曲线积分与型曲面积分
§12.1.1 型曲线积分
§12.1.2 型曲面积分
§12.2 第二型曲线积分与第二型曲面积分
§12.2.1 第二型曲线积分
§12.2.2 第二型曲面积分
§12.3 Green公式、Gauss公式和Stokes公式
§12.3.1 Green公式
§12.3.2 曲线积分与路径无关的条件
§12.3.3 Gauss公式
§12.3.4 Stokes公式
§12.4 场论初步
§12.4.1 场的概念
§12.4.2 数量场的等值面和梯度场
§12.4.3 向量场的通量与散度
§12.4.4 向量场的环量与旋度
§12.4.5 管量场与有势场
§12.4.6 Hamilton算子
3章 反常积分
§13.1 反常积分的概念和计算
§13.1.1 反常积分的概念
§13.1.2 反常积分的性质与计算
§13.1.3 反常积分的Cauchy主值
§13.2 反常积分的收敛判别法
§13.2.1 无穷区间上的反常积分的收敛判别法
§13.2.2 瑕积分的收敛判别法
§13.3 反常重积分
§13.3.1 无穷反常重积分
§13.3.2 无界函数的反常二重积分
4章 含参变量积分
§14.1 含参变量的常义积分
§14.1.1 含参变量积分的概念
§14.1.2 含参变量的常义积分所定义的函数的分析性质
§14.2 含参变量的反常积分
§14.2.1 含参变量的反常积分的一致收敛性
§14.2.2 含参变量反常积分一致收敛性的判别
§14.2.3 一致收敛积分的分析性质
§14.3 Euler积分
§14.3.1 Beta函数
§14.3.2 Gamma函数
§14.3.3 Beta函数与Gamma函数的关系
§14.3.4 Euler公式的拓展:Legendre公式、余元公式和Stirling公式
5章 数项级数
§15.1 数项级数的收敛性
§15.1.1 数项级数的概念
§15.1.2 级数Cauchy收敛原理
§15.2 正项级数
§15.2.1 Cauchy判别法(或根式判别法(root test))
§15.2.2 D'Alembert判别法(或比式判别法(ratio test))
§15.2.3 积分判别法(integral test)
§15.2.4 Raabe判别法
§15.2.5 其他一些判别法
§15.3 任意项级数
§15.3.1 交错级数与Leibniz判别法
§15.3.2 Abel判别法与Dirichlet判别法
§15.3.3 级数的绝对收敛与条件收敛
§15.3.4 级数的重排
§15.3.5 级数的乘法
§15.4 无穷乘积
§15.4.1 无穷乘积定义
§15.4.2 无穷乘积的性质
§15.4.3 无穷乘积与无穷级数的转化
§15.4.4 绝对收敛
6章 函数项级数
§16.1 点态收敛和一致收敛
§16.1.1 点态收敛与收敛域
§16.1.2 函数项级数与函数列的基本问题
§16.1.3 一致收敛的定义
§16.1.4 函数列一致收敛与非一致收敛的判别
§16.2 级数一致收敛性的判别与一致收敛级数的性质
§16.2.1 函数项级数一致收敛性的判别
§16.2.2 一致收敛的函数列与函数项级数的性质
§16.3 幂级数
§16.3.1 幂级数的收敛域
§16.3.2 幂级数的性质
§16.3.3 Taylor级数与余项公式
§16.3.4 初等函数的幂级数展开
7章 Fourier级数
§17.1 函数的Fourier级数展开
§17.1.1 平方可积函数空间与正交函数系
§17.1.2 周期为2π的函数的Fourier展开
§17.1.3 正弦级数和余弦级数
§17.1.4 任意周期的函数的Fourier展开
§17.2 Fourier级数的收敛判别法
§17.2.1 Dirichlet积分
§17.2.2 Riemann引理及其推论
§17.2.3 Fourier级数的收敛判别法
§17.3 Fourier级数的性质
§17.3.1 Fourier级数的分析性质
§17.3.2 Fourier级数的平方逼近性质
§17.4 Fourier变换
§17.4.1 Fourier积分
§17.4.2 Fourier变换及其逆变换
§17.4.3 Fourier变换的性质
参考文献
附录 数学分析Ⅲ试卷
索引
内容推荐
《数学分析讲义(第三册)》是作者在东南大学连续20多年讲授“数学分析”课程的基础上写成的,并已连续试用近10年。《数学分析讲义(第三册)》取名为“讲义”,较大特点就是一切从读者的角度去讲解,既注重数学思想的阐述和严格的逻辑推导,又突出实际背景与几何直观的描述,并适当穿插了一些数学文化的介绍。在编排上尽量体现先易后难和分步走的原则。习题分类安排,即分为A、B、C三类。其中,A类是基本题,B类是提高题,C类是讨论题。《数学分析讲义(第三册)》对讨论题给予更多关注,目的在于帮助学生厘清概念,增强研学与创新能力。
《数学分析讲义(第三册)》分为三册,册包括极限、连续、导数及其逆运算(不定积分),第二册包括实数理论续(含上极限、下极限、欧氏空间)、定积分及多元微积分,第三册包括级数与反常积分(含参变量积分)等。
标签
缩略图
书名 数学分析讲义(第3册)
副书名
原作名
作者 张福保,薛星美,潮小李 编
译者
编者
绘者
出版社 科学出版社
商品编码(ISBN) 9787030616098
开本 16开
页数 253
版次 1
装订 平装
字数 390千字
出版时间 2019-06-01
首版时间 2019-06-01
印刷时间 2019-06-01
正文语种
读者对象
适用范围
发行范围
发行模式 实体书
首发网站
连载网址
图书大类
图书小类
重量
CIP核字
中图分类号 O17
丛书名
印张
印次 1
出版地
26cm
整理
媒质
用纸
是否注音
影印版本
出版商国别
是否套装
著作权合同登记号
版权提供者
定价
印数
出品方
作品荣誉
主角
配角
其他角色
一句话简介
立意
作品视角
所属系列
文章进度
内容简介
作者简介
目录
文摘
安全警示 适度休息有益身心健康,请勿长期沉迷于阅读小说。
随便看

 

兰台网图书档案馆全面收录古今中外各种图书,详细介绍图书的基本信息及目录、摘要等图书资料。

 

Copyright © 2004-2025 xlantai.com All Rights Reserved
更新时间:2025/5/6 10:27:59