首页  软件  游戏  图书  电影  电视剧

请输入您要查询的图书:

 

图书 支持向量机与基于核的机器学习导论(英文版)
内容
目录
Preface
Notation
1 The Learning Methodology
1.1 Supervised Learning
1.2 Learning and Generalisation
1.3 Improving Generalisation
1.4 Attractions and Drawbacks of Learning
1.5 Support Vector Machines for Learning
1.6 Exercises
1.7 Further Reading and Advanced Topics
2 Linear Learning Machines
2.1 Linear Classification
2.1.1 Rosenblatt's Perceptron
2.1.2 Other Linear Classmers
2.1.3 Multi-class Discfimination
2.2 Linear Regression
2.2.1 Least Squares
2.2.2 Ridge Regression
2.3 Dual Representation of Linear Machines
2.4 Exercises
2.5 Further Reading and Advanced Topics
3 Kernel-Induced Fleature Spaces
3.1 Learning jn Feature Space
3.2 The Implicit Mapping into Feature Space
3.3 Making Kernels
3.3.1 Characterisation of Kernels
3.3.2 Making Kernels from Kernels
3.3.3 Making Kernels from Features
3.4 Working in Feature Space
3.5 Kernels and Gaussian Processes
3.6 Exercises
3.7 Further Reading and Advanced Topics
4 Generalisation Theory
4.1 Probably Approximately Correct Learning
4.2 Vapnik Chenronenkis (VC) Theory
4.3 Margin-Based Bounds on Generalisation
4.3.1 Maximal Margin Bounds
4.3.2 Margin Percentile Bounds
4.3.3 Soft Margin Bounds
4.4 Other Bounds on Generalisation and Luckiness
4.5 Generalisation for Regression
4.6 Bayesian Analysis of Learning
4.7 Exercises
4.8 Further Reading and Advanced Topics
5 Optimisation Theory
5.1 Problem Formulation
5.2 Lagrangian Theory
5.3 Duality
5.4 Exercises
5.5 Further Reading and Advanced Topics
6 Support Vector Machines
6.1 Support Vector Classification
6.1.1 The Maximal Margin Classifier
6.1.2 Soft Margin Optimisation
6.1.3 Linear Programming Support Vector Machines
6.2 Support Vector Regression
6.2.1 ε-Insensitive Loss Regression
6.2.2 Kernel Ridge Regression
6.2.3 Gaussian Processes
6.3 Discussion
6.4 Exercises
6.5 Further Reading and Advanced Topics
7 Implementation Techniques
7.1 General Issues
7.2 The Naive Solution: Gradient Ascent
7.3 General Techniques and Packages
7.4 Chunking and Decomposition
7.5 Sequential Minimal Optimisation (SMO)
7.5.1 Analvtical Solution for Two Points
7.5.2 Selection Heuristics
7.6 Techniaues for Gaussian Processes
7.7 Exercises
7.8 Further Reading and Advanced Topics
8 Applications of Support Vector Machines
8.1 Text Categorisation
8.1.1 A Kernel from IR Applied to Information Filtering
8.2 Image Recognition
8.2.1 Aspect Independent Classification
8.2.2 Colour-Based Classification
8.3 Hand-written Digit Recognition
8.4 Bioinformatics
8.4.1 Protein Homology Detection
8.4.2 Gene Expression
8.5 Further Reading and Advanced Topics
A Pseudocode for the SMO Algorithm
B Background Mathematics
B.1 vector Spaces
B.2 Inner Product Spaces
B.3 Hilbert Spaces
B.4 Operators, Eigenvalues and Eigenvectors
References
Index
内容推荐
支持向量机(Support Vector Machine,SVM)是建立在弗拉基米尔·万普尼克(Vladimir Vapnik)提出的统计学习理论基础上的一种使用广泛的机器学习方法。这本简明导论教程对支持向量机及其理论基础进行了全面的介绍。书中从机器学习方法论讲到到超平面、核函数、泛化理论、优化理论,很后总结到支持向量机理论,并介绍了其实现技术及应用。本书的叙述循序渐进,内容深入浅出,既严谨又易于理解。书中清晰的条理、富于逻辑性的推导以及优美的文字,备受初学者和专家的赞许。本书可作为计算机、自动化、电子工程、应用数学等专业的高年级本科生或研究生教材,也可作为机器学习、人工智能、神经网络、数据挖掘等课程的参考教材,同时还是相关领域的教师和研究人员的参考书。
标签
缩略图
书名 支持向量机与基于核的机器学习导论(英文版)
副书名
原作名
作者 (英)内洛·克里斯蒂安尼尼,(英)约翰·肖·泰勒
译者
编者
绘者
出版社 世界图书出版公司
商品编码(ISBN) 9787519277017
开本 16开
页数 216
版次 1
装订 平装
字数 189000
出版时间 2020-09-01
首版时间 2020-09-01
印刷时间 2020-09-01
正文语种
读者对象
适用范围
发行范围
发行模式 实体书
首发网站
连载网址
图书大类 教育考试-考试-计算机类
图书小类
重量
CIP核字
中图分类号 TP38
丛书名
印张
印次 1
出版地
24cm
整理
媒质
用纸
是否注音
影印版本
出版商国别
是否套装
著作权合同登记号
版权提供者
定价
印数
出品方
作品荣誉
主角
配角
其他角色
一句话简介
立意
作品视角
所属系列
文章进度
内容简介
作者简介
目录
文摘
安全警示 适度休息有益身心健康,请勿长期沉迷于阅读小说。
随便看

 

兰台网图书档案馆全面收录古今中外各种图书,详细介绍图书的基本信息及目录、摘要等图书资料。

 

Copyright © 2004-2025 xlantai.com All Rights Reserved
更新时间:2025/5/5 10:57:44