法德维编著的《孤立子理论中的哈密顿方法》旨在讲述逆散射方法及其在孤立子中的应用—哈密顿方法。前半部分讲述非线性Schrodinger方程;后半部分介绍sine-Gordon方程和Heisenberg方程,以及构成他们解的可积模型和方法的分类。目次:(一)非线性Schrodinger方程:零曲率表示;黎曼问题;哈密尔顿公式;(二)可积发展问题方程的一般理论:基本例子及其一般性质;基础连续模型;可积模型分类和分析的李代数方法。读者对象:数学物理、力学专业的研究生和相关的科研人员。
图书 | 孤立子理论中的哈密顿方法 |
内容 | 编辑推荐 法德维编著的《孤立子理论中的哈密顿方法》旨在讲述逆散射方法及其在孤立子中的应用—哈密顿方法。前半部分讲述非线性Schrodinger方程;后半部分介绍sine-Gordon方程和Heisenberg方程,以及构成他们解的可积模型和方法的分类。目次:(一)非线性Schrodinger方程:零曲率表示;黎曼问题;哈密尔顿公式;(二)可积发展问题方程的一般理论:基本例子及其一般性质;基础连续模型;可积模型分类和分析的李代数方法。读者对象:数学物理、力学专业的研究生和相关的科研人员。 目录 Introduction References Part One The Nonlinear Schrodinger Equation (NS Model) Chapter Ⅰ Zero Curvature Representation 1.Formulation of the NS Model 2.Zero Curvature Condition 3.Properties of the Monodromy Matrix in the Quasi-Periodic Case 4.Local Integrals of the Motion 5.The Monodromy Matrix in the Rapidly Decreasing Case 6.Analytic Properties of Transition Coefficients 7.The Dynamics of Transition Coefficients 8.The Case of Finite Density.Jost Solutions 9.The Case of Finite Density.Transition Coefficients 10.The Case of Finite Density.Time Dynamics and Integrals of the Motion 1.Notes and References References Chapter Ⅱ The Riemann Problem 1.The Rapidly Decreasing Case.Formulation of the Riemann Problem 2.The Rapidly Decreasing Case.Analysis of the Riemann Problem 3.Application of the Inverse Scattering Problem to the NS Model 4.Relationship Between the Riemann Problem Method and the Gelfand-Levitan-Marchenko Integral Equations Formulation 5.The Rapidly Decreasing Case.Soliton Solutions 6.Solution of the Inverse Problem in the Case of Finite Density.The Riemann Problem Method 7.Solution of the Inverse Problem in the Case of Finite Density.The Gelfand-Levitan-Marchenko Formulation 8.Soliton Solutions in the Case of Finite Density 9.Notes and References References Chapter Ⅲ The Hamiltonian Formulation 1.Fundamental Poisson Brackets and the /"-Matrix 2.Poisson Commutativity of the Motion Integrals in the Quasi-Periodic Case 3.Derivation of the Zero Curvature Representation from the Fundamental Poisson Brackets 4.Integrals of the Motion in the Rapidly Decreasing Case and in the Case of Finite Density 5.The A-Operator and a Hierarchy of Poisson Structures 6.Poisson Brackets of Transition Coefficients in the Rapidly Decreasing Case 7.Action-Angle Variables in the Rapidly Decreasing Case 8.Soliton Dynamics from the Hamiltonian Point of View 9.Complete Integrability in the Case of Finite Density 10.Notes and References References Part Two General Theory of Integrable Evolution Equations Chapter Ⅰ Basic Examples and Their General Properties 1.Formulation of the Basic Continuous Models 2.Examples of Lattice Models 3.Zero Curvature Representation's a Method for Constructing Integrable Equations 4.Gauge Equivalence of the NS Model (#=-1) and the HM Model 5.Hamiltonian Formulation of the Chiral Field Equations and Related Models 6.The Riemann Problem as a Method for Constructing Solutions of Integrable Equations 7.A Scheme for Constructing the General Solution of the Zero Curvature Equation. Concluding Remarks on Integrable Equations 8.Notes and References References Chapter Ⅱ Fundamental Continuous Models 1.The Auxiliary Linear Problem for the HM Model 2.The Inverse Problem for the HM Model 3.Hamiltonian Formulation of the HM Model 4.The Auxiliary Linear Problem for the SG Model 5.The Inverse Problem for the SG Model 6.Hamiltonian Formulation of the SG Model 7.The SG Model in Light-Cone Coordinates 8.The Landau-Lifshitz Equation as a Universal Integrable Model with Two-Dimensional Auxiliary Space 9.Notes and References References Chapter III.Fundamental Models on the Lattice 1.Complete Integrability of the Toda Model in the Quasi-Peri-odic Case 2.The Auxiliary Linear Problem for the Toda Model in the Rap-idly Decreasing Case 3.The Inverse Problem and Soliton Dynamics for the Toda Model in the Rapidly Decreasing Case 4.Complete Integrability of the Toda Model in the Rapidly Decreasing Case 5.The Lattice LL Model as a Universal'Integrable System with Two-Dimensional Auxiliary Space 6.Notes and References References Chapter IV.Lie-Algebraic Approach to the Classification and Analysis of Integrable Models 1.Fundamental Poisson Brackets Generated by the Current Algebra 2.Trigonometric and Elliptic r-Matrices and the Related Fundamental Poisson Brackets 3.Fundamental Poisson Brackets on the Lattice 4.Geometric Interpretation of the Zero Curvature Representation and the Riemann Problem Method 5.The General Scheme as Illustrated with the NS Model 6.Notes and References References Conclusion List of Symbols Index |
标签 | |
缩略图 | ![]() |
书名 | 孤立子理论中的哈密顿方法 |
副书名 | |
原作名 | |
作者 | 法德维 |
译者 | |
编者 | |
绘者 | |
出版社 | 世界图书出版公司 |
商品编码(ISBN) | 9787510058264 |
开本 | 24开 |
页数 | 592 |
版次 | 1 |
装订 | 平装 |
字数 | |
出版时间 | 2013-03-01 |
首版时间 | 2013-03-01 |
印刷时间 | 2013-03-01 |
正文语种 | 英 |
读者对象 | 普通成人 |
适用范围 | |
发行范围 | 公开发行 |
发行模式 | 实体书 |
首发网站 | |
连载网址 | |
图书大类 | 科学技术-自然科学-物理 |
图书小类 | |
重量 | 0.72 |
CIP核字 | 2013035264 |
中图分类号 | O316 |
丛书名 | |
印张 | 25.5 |
印次 | 1 |
出版地 | 北京 |
长 | 228 |
宽 | 148 |
高 | 24 |
整理 | |
媒质 | 图书 |
用纸 | 普通纸 |
是否注音 | 否 |
影印版本 | 原版 |
出版商国别 | CN |
是否套装 | 单册 |
著作权合同登记号 | 图字01-2012-7881 |
版权提供者 | Springer Science+Business Media |
定价 | |
印数 | |
出品方 | |
作品荣誉 | |
主角 | |
配角 | |
其他角色 | |
一句话简介 | |
立意 | |
作品视角 | |
所属系列 | |
文章进度 | |
内容简介 | |
作者简介 | |
目录 | |
文摘 | |
安全警示 | 适度休息有益身心健康,请勿长期沉迷于阅读小说。 |
随便看 |
|
兰台网图书档案馆全面收录古今中外各种图书,详细介绍图书的基本信息及目录、摘要等图书资料。