This book was planned and begun in 1 929.Our original inten.tion was that it should be ono of the Cambridge Tracts,but it soon became plain that a tract would be much too short for our purpose.
图书 | 不等式(第2版) |
内容 | 编辑推荐 This book was planned and begun in 1 929.Our original inten.tion was that it should be ono of the Cambridge Tracts,but it soon became plain that a tract would be much too short for our purpose. 目录 TABLE OF CONTENTS CHAPTEB Ⅰ.INTRODUCTl0N 1.1.Finite,infinite,and integral inequalities 1.2.NotatiOIlS 1.3.Positive inequalities 1.4.Homogeneous inequalities 1.5.The axiomatic basis of algebraic inequalities 1.6.Comparable functions 1.7.Selection of proofs 1.8.Selection of subjects CHAPTEB Ⅱ.ELEMENTARY MEAN VALUES 2.1.Ordinary mealls 2.2.Weighted means 2.3.Limiting eases of ■ 2.4.Cauchy’S inequality 2.5.The theorem of the arithmetic and geometric means 2.6.Other proofs of the theorem of the meails 2.7.H61der’S inequality and its extensions 2.8.HSlder’S inequality and its extensions(cont) 2.9.General properties of the means■ 2.10.The sums ■ 2.11.Minkowsld’S inequality . 2.12.A companion to Minkowski’S inequality 2.13.Illustrations and applications of the funda- mental inequalities 2.14.Inductive proofs of the fundamental in equalities 2.15.Elementary inequalities connected with Theorem 37 2.16.Elementary proof of Theorem 2.17.Tchebychef’S inequality 2.18.Muirhead’B theorem 2.19.Proof of Muirhead’8 theorem. 2.20.An alternative theorem 2.21.Further theorems on symmetrical means 2.22.The elementary symmetric functions of positive numbers 2.23.A note 0n definite forms 2.24.A theorem concerning strictly positive forms Miscellaneous theorems and examples CXAPTER Ⅲ.MEAN VALUES WITH AN ARBITRARY FUNCTION AND THE THE RY OFCONVEX FUNCTI0NS 3.1.Deftnitions 3.2.Equivalent means 3.3.A characteristic property of the means■ 3.4.Comparability 3.5.Convex functions 3.6.Continuous convex functions 3.7.An altornative deftn/tion 3.8.Equality in the fundamental inequahties 3.9.Restatements and extensions of Theorem 85 3.10.Twice differentiable convex functions 3.11.Applications of the properties of twice differ- entiable convex functions 3.12.Convex functions of several variables 3.13.Generalisations of H61der’s inequality 3.14.Some theorems concerning monotonie func tions 3.15.Sums with an arbitrary function:generalisations of Jcnsen,s inequality 3.16.Generalisations of Minkowsld’s inequality 3.17.Comparison of sets 3.18.Further general properties of convex functions 3.19.Further properties of continuous convex functions 3.20.Discontinuous convex functions Miscellaneotis theorems and examples CHAPTER Ⅳ.VARIOUS APPLICATIONS OF THE CALCULUS 4.1.Introduction 4.2.Applications of the mean value theorem 4.3.Further applications of elementary differential ealculus 4.4.Maxima and minima of functions of one variable 4.5.Use of Taylor’s series 4.6.Applications of the theory of maxima and minima of functions of several variables 47.Comparison of series and integrals 48An inequality of W.H.Young CHAPTER Ⅴ.INFINITE SERIES 5.1.Intr Oduetion 5.2.The means吼 5.3.The generalisation of Theorems 3 and 9 6.4.HSlder’s inequality and its extensions 5.5.The means ■ 5.6.The sums ■ 5.7.Minkowski’s inequality 5.8.Tchebychef’s inequality 5.9.A summary Miscellaneous theorems and examples CHAPTER Ⅵ.INTEGRALS 6.1.Preliminary remarks on Lebesgue integrals. 6.2.Remarks on null sets and null functio 6.3.Further remarks concerning ingration 6.4.Remarks on methods of proof 6.5.Further remarks on method:the inequality of Schwarz 6.6.Definition of the means ■ 6.7.The geometric inean of a function 6.8.Further properties of the geometric mean 6.9.HSlder’s inequality for integrals 6.10.General properties of the means■ 6.11.General properties of the means■ 6.12.Convexity of log■’ 6.13.Minkowski’s inequality for integrals 6.14.Tean values depending on aD arbitrary function 6.15.The definition of the Stieltjes integral 6.16.Special cases of the Stieltjes integral 6.17.Extensions of earlior theorems 6.18.The means■ 6.19.Distrlbution functions 6.20.Characterisation of mean values 6.21.Remarks 0n the characteristic properties 6.22.Completion of the proof of Theorem 215 Miscellaneous theorems and examples CHAPTER Ⅶ.SOME APPLICATIONS OF THE CALCULUS OF VARIATION8 7.1.Some general remarks 7.2.Object of the present chapter 7.3.Example of an inequality corresponding to an unattained extremum 7.4.First proof of Theorem 254 7.5.Second proof of Theorem 254 7.6.Further examples illustrative of variational methods 7.7.Further examples:Wirtinger’S inequality 7.8.An example involving second derivatives 7.9.A simpler problem Miscellaneous theorems and examples CHAPTER Ⅶ.SOME THEOREMS CONCERNING BILINEAR AND MULTILINEAR FORMS 8.1.Introduction 8.2.An inequaHty for multilinear forms with positive variables and coefficients 8.3.A theorem of W.H.Young 8.4 Generalisations and analogues 8.5.Applications to Fourier series 8.6.Th0 convexity theorem for posilive linear forms 8.8.DeFmltion of a bounded bilinear form 8.9.Some properties of bounded forms in[p,g] 8.10.The Faltung of two forms in [p,p’] 8.11.Some special theorems on forms in[2,2] 8.12.Application t0丑nbert’S forms 8.13.ThO eonvexity theorem for bilinear forms with complex variables and coefficients 8.14.Further properties of a maximal set(x,Y) 8.15.Proof of Theorem 295 8.16.Applications of the theorem of M.Riesz 8.17.Applications to Fourier series Miscellaneous theorems and examples CEAPTEB Ⅸ.HILBERT’8 INEQUALITY AND ITS ANALOGUES AND EXTENSl0NS 9.1.Hilbert’S double series theorem 9.2.A general class of bihnear forms 9.3.The corresponding theorem for integrals g.4.Extensions of Theorems 318 and 319 9.5.Best possible constants:proof of Theorem 317 9.6.Further remarks on Hilbert’S theorems 9.7.Applications of Hilbert’S theorems 9.8.Hardy’S inequality 9.9.Further integral inequalities 9.10.Further theorems concerning series 9.11.Deduetion of theorems on series from theorems on integrals 9.12.Carleman’S inequality 9.13.Theorems with 0<P<1 9.14.A theorem with two parameters p and g Miscellaneous theorems and examples CIIAPTER Ⅹ.REARRANGEMENTS lO.1.Rearrangements of finite sets of variables 10.2.A theorem concerning the rearrangements of two sets 10.3.A second proof of Theorem 368 10.4.Restatement of Theorem 368 10.5.Theorems concerning the rearrangements of three sets 10.6.ReductiOil of Theorem 373 to a special case 10.7.Completion of the proof 10.8.Another proof of Theorem 371 10.9.Rearrangements of any number of sets 10.10.A further theorem on the rearrangement of any number of sets 10.II.Applications 10.12.The rearrangement of a function 10.13.0n the rearrangement of two functions 10.14.On the rearrangement of three functions 10.15.Completion of the proof of Theorem 379 10.16.An alternative proof 10.17.Applications. 10.18.Another theorem concerning the rearrange. ment of a function in decreasing order 10.19.Proof of Theorem 384 Miscellaneous theorems and examples APPENDIX Ⅰ.On strictly positive forms APPRNDIX Ⅱ.Thorin’S proof and extension of Theorem 295 APPENDIX Ⅲ.0n Hilbert’S inequality BIBLIEQRAPHY |
标签 | |
缩略图 | ![]() |
书名 | 不等式(第2版) |
副书名 | |
原作名 | |
作者 | G.Hardy//J.E.Littlewood |
译者 | |
编者 | |
绘者 | |
出版社 | 世界图书出版公司 |
商品编码(ISBN) | 9787506266062 |
开本 | 24开 |
页数 | 324 |
版次 | 1 |
装订 | 平装 |
字数 | |
出版时间 | 2004-04-01 |
首版时间 | 2004-04-01 |
印刷时间 | 2004-04-01 |
正文语种 | 英 |
读者对象 | 青年(14-20岁),研究人员,普通成人 |
适用范围 | |
发行范围 | 公开发行 |
发行模式 | 实体书 |
首发网站 | |
连载网址 | |
图书大类 | 科学技术-自然科学-数学 |
图书小类 | |
重量 | 0.418 |
CIP核字 | |
中图分类号 | |
丛书名 | |
印张 | 14.5 |
印次 | 1 |
出版地 | 北京 |
长 | 224 |
宽 | 149 |
高 | 15 |
整理 | |
媒质 | 图书 |
用纸 | 普通纸 |
是否注音 | 否 |
影印版本 | 原版 |
出版商国别 | CN |
是否套装 | 单册 |
著作权合同登记号 | 图字01-2004-2005 |
版权提供者 | Cambridge University Press |
定价 | |
印数 | |
出品方 | |
作品荣誉 | |
主角 | |
配角 | |
其他角色 | |
一句话简介 | |
立意 | |
作品视角 | |
所属系列 | |
文章进度 | |
内容简介 | |
作者简介 | |
目录 | |
文摘 | |
安全警示 | 适度休息有益身心健康,请勿长期沉迷于阅读小说。 |
随便看 |
|
兰台网图书档案馆全面收录古今中外各种图书,详细介绍图书的基本信息及目录、摘要等图书资料。