首页  软件  游戏  图书  电影  电视剧

请输入您要查询的图书:

 

图书 黎曼几何(第3版)
内容
编辑推荐

本书是一部值得一读的研究生教材,内容主要涉及黎曼几何基本定理的研究,如霍奇定理、rauch比较定理、lyusternik和fet定理调和映射的存在性等。另外,书中还有当代数学研究领域中的最热门论题,有些内容则是首次出现在教科书中。该书适合数学和理论物理专业的研究生、教师和科研人员阅读研究。

目录

Differential manifolds

 1.A From submanifolds to abstract manifolds

1.A.1 Submanifolds of Euclidean spaces

1.A.2 Abstract manifolds

1.A.3 Smooth maps

 1.B The tangent bundle

1.B.1 Tangent space to a submanifold of Rn+k

1.B.2 The manifold of tangent vectors

1.B.3 Vector bundles

1.B.4 Tangent map

 1.C Vector fields

1.C.1 Definitions

1.C.2 Another definition for the tangent space

1.C.3 Integral curves and flow of a vector field

1.C.4 Image of a vector field by a diffeomorphism

 1.D Baby Lie groups

1.D.1 Definitions

1.D.2 Adjoint representation

 1.E Covering maps and fibrations

1.E.1 Covering maps and quotients by a discrete group

1.E.2 Submersions and fibrations

1.E.3 Homogeneous spaces

 1.F Tensors

1.F.1 Tensor product(a digest)

1.F.2 Tensor bundles

1.F.3 Operations on tensors

1.F.4 Lie derivatives

1.F.5 Local operators, differential operators

1.F.6 A characterization for tensors

1.G Differential forms

1.G.1 Definitions

1.G.2 Exterior derivative

1.G.3 Volume forms

1.G.4 Integration on an oriented manifold

1.G.5 Haar measure on a Lie group

 1.H Partitions of unity

2  Riemannian metrics

 2.A Existence theorems and first examples

2.A.1 Basic definitions

2.A.2 Submanifolds of Euclidean or Minkowski spaces

2.A.3 Riemannian submanifolds, Riemannian products

2.A.4 Riemannian covering maps, flat tori

2.A.5 Riemannian submersions, complex projective space

2.A.6 Homogeneous Riemannian spaces

 2.B Covariant derivative

2.B.1 Connections

2.B.2 Canonical connection of a Riemannian submanifold

2.B.3 Extension of the covariant derivative to tensors

2.B.4 Covariant derivative along a curve

2.B.5 Parallel transport

2.B.6 A natural metric on the tangent bundle

 2.C Geodesics

2.C.1 Definition, first examples

2.C.2 Local existence and uniqueness for geodesics,exponential map

2.C.3 Riemannian manifolds as metric spaces

2.C.4 An invitation to isosystolic inequalities

2.C.5 Complete Riemannian manifolds, Hopf-Rinow theorem.

2.C.6 Geodesics and submersions, geodesics of PnC:

2.C.7 Cut-locus

2.C.8 The geodesic flow

 2.D A glance at pseudo-Riemannian manifolds

2.D.1 What remains true?

2.D.2 Space, time and light-like curves

2.D.3 Lorentzian analogs of Euclidean spaces, spheres and hyperbolic spaces

2.D.4 (In)completeness

2.D.5 The Schwarzschild model

2.D.6 Hyperbolicity versus ellipticity

3 Curvature

 3.A The curvature tensor

3.A.1 Second covariant derivative

3.A.2 Algebraic properties of the curvature tensor

3.A.3 Computation of curvature: some examples

3.A.4 Ricci curvature, scalar curvature

 3.B First and second variation

3.B.1 Technical preliminaries

3.B.2 First variation formula

3.B.3 Second variation formula

 3.C Jacobi vector fields

3.C.1 Basic topics about second derivatives

3.C.2 Index form

3.C.3 Jacobi fields and exponential map

3.C.4 Applications

 3.D Riemannian submersions and curvature

3.D.1 Riemannian submersions and connections

3.D.2 Jacobi fields of PnC

3.D.3 O'Neill's formula

3.D.4 Curvature and length of small circles.Application to Riemannian submersions

 3.E The behavior of length and energy in the neighborhood of a geodesic

3.E.1 Gauss lemma

3.E.2 Conjugate points

3.E.3 Some properties of the cut-locus

 3.F Manifolds with constant sectional curvature

 3.G Topology and curvature: two basic results

3.G.1 Myers' theorem

3.G.2 Cartan-Hadamard's theorem

 3.H Curvature and volume

3.H.1 Densities on a differentiable manifold

3.H.2 Canonical measure of a Riemannian manifold

3.H.3 Examples: spheres, hyperbolic spaces, complex projective spaces

3.H.4 Small balls and scalar curvature

3.H.5 Volume estimates

 3.I Curvature and growth of the fundamental group

3.I.1 Growth of finite type groups

3.I.2 Growth of the fundamental group of compact manifolds with negative curvature

 3.J Curvature and topology: some important results

3.J.1 Integral formulas

3.J.2 (Geo)metric methods

3.J.3 Analytic methods

3.J.4 Coarse point of view: compactness theorems

 3.K Curvature tensors and representations of the orthogonal group

3.K.1 Decomposition of the space of curvature tensors

3.K.2 Conformally flat manifolds

3.K.3 The Second Bianchi identity

 3.L Hyperbolic geometry

3.L.1 Introduction

3.L.2 Angles and distances in the hyperbolic plane

3.L.3 Polygons with "many" right angles

3.L.4 Compact surfaces

3.L.5 Hyperbolic trigonometry

3.L.6 Prescribing constant negative curvature

3.L.7 A few words about higher dimension

 3.M Conformal geometry

3.M.1 Introduction

3.M.2 The MSbius group

3.M.3 Conformal, elliptic and hyperbolic geometry

4 Analysis on manifolds

 4.A Manifolds with boundary

4.A.1 Definition

4.A.2 Stokes theorem and integration by parts

 4.B Bishop inequality

4.B.1 Some commutation formulas

4.B.2 Laplacian of the distance function.

4.B.3 Another proof of Bishop's inequality

4.B.4 Heintze-Karcher inequality

 4.C Differential forms and cohomology

4.C.1 The de Rham complex

4.C.2 Differential operators and their formal adjoints

4.C.3 The Hodge-de Rham theorem

4.C.4 A second visit to the Bochner method

 4.D Basic spectral geometry

4.D.1 The Laplace operator and the wave equation

4.D.2 Statement of basic results on the spectrum

 4.E Some examples of spectra

4.E.1 Introduction

4.E.2 The spectrum of flat tori

4.E.3 Spectrum of (Sn,can)

 4.F The minimax principle

 4.G Eigenvalues estimates

4.G.1 Introduction

4.G.2 Bishop's inequality and coarse estimates

4.0.3 Some consequences of Bishop's theorem

4.G.4 Lower bounds for the first eigenvalue

 4.H Paul Levy's isoperimetric inequality

4.H.1 The statement

4.H.2 The proof

5 Riemannian submanifolds

 5.A Curvature of submanifolds

5.A.1 Second fundamental form

5.A.2 Curvature of hypersurfaces

5.A.3 Application to explicit computations of curvatures

 5.B Curvature and convexity

 5.C Minimal surfaces

5.C.1 First results

5.C.2 Surfaces with constant mean curvature

A Some extra problems

B Solutions of exercises

Bibliography

Index

List of figures

标签
缩略图
书名 黎曼几何(第3版)
副书名
原作名
作者 (法)加洛特//虎林//拉方丹
译者
编者
绘者
出版社 世界图书出版公司
商品编码(ISBN) 9787506282963
开本 24开
页数 322
版次 1
装订 平装
字数
出版时间 2008-01-01
首版时间 2008-01-01
印刷时间 2008-01-01
正文语种
读者对象 研究人员,普通成人
适用范围
发行范围 公开发行
发行模式 实体书
首发网站
连载网址
图书大类 科学技术-自然科学-数学
图书小类
重量 0.398
CIP核字
中图分类号 O186.12
丛书名
印张 14.5
印次 1
出版地 北京
226
148
15
整理
媒质 图书
用纸 普通纸
是否注音
影印版本 原版
出版商国别 CN
是否套装 单册
著作权合同登记号 图字01-2007-4600
版权提供者 Springer
定价
印数
出品方
作品荣誉
主角
配角
其他角色
一句话简介
立意
作品视角
所属系列
文章进度
内容简介
作者简介
目录
文摘
安全警示 适度休息有益身心健康,请勿长期沉迷于阅读小说。
随便看

 

兰台网图书档案馆全面收录古今中外各种图书,详细介绍图书的基本信息及目录、摘要等图书资料。

 

Copyright © 2004-2025 xlantai.com All Rights Reserved
更新时间:2025/5/10 23:20:53