有限元法被广泛用于工程设计和工程分析。本书是Springer出版的《应用数学教材》丛书之15。全书分成15章,在第1版的基础上增加了加性Schwarz预条件和自适应格;书中不但提供有限元法系统的数学理论。还兼重在工程设计和分析中的应用算法效率、程序开发和较难的收敛问题。
图书 | 有限元方法的数学理论(第2版) |
内容 | 编辑推荐 有限元法被广泛用于工程设计和工程分析。本书是Springer出版的《应用数学教材》丛书之15。全书分成15章,在第1版的基础上增加了加性Schwarz预条件和自适应格;书中不但提供有限元法系统的数学理论。还兼重在工程设计和分析中的应用算法效率、程序开发和较难的收敛问题。 目录 Series Preface Preface to the Second Edition Preface to the First Edition 0 Basic Concepts 0.1 Weak Formulation of Boundary Value Problems 0.2 Ritz-Galerkin Approximation 0.3 Error Estimates 0.4 Piecewise Polynomial Spaces - The Finite Element Method 0.5 Relationship to Difference Methods 0.6 Computer Implementation of Finite Element Methods 0.7 Local Estimates 0.8 Adaptive Approximation 0.9 Weighted Norm Estimates 0.x Exercises 1 Sobolev Spaces 1.1 Review of Lebesgue Integration Theory 1.2 Generalized (Weak) Derivatives 1.3 Sobolev Norms and Associated Spaces 1.4 Inclusion Relations and Sobolev's Inequality 1.5 Review of Chapter 0 1.6 Trace Theorems 1.7 Negative Norms and Duality 1.x Exercises 2 Variational Formulation of Elliptic Boundary Value Problems 2.1 Inner-Product Spaces 2.2 Hilbert Spaces 2.3 Projections onto Subspaces 2.4 Riesz Representation Theorem 2.5 Formulation of Symmetric Variational Problems 2.6 Formulation of Nonsymmetric Variational Problems 2.7 The Lax-Milgram Theorem 2.8 Estimates for General Finite Element Approximation 2.9 Higher-dimensional Examples 2.x Exercises 3 The Construction of a Finite Element Space 3.1 The Finite Element 3.2 Triangular Finite Elements The Lagrange Element The Hermite Element The Argyris Element 3.3 The Interpolant 3.4 Equivalence of Elements 3.5 Rectangular Elements Tensor Product Elements The Serendipity Element 3.6 Higher-dimensional Elements 3.7 Exotic Elements 3.x Exercises 4 Polynomial Approximation Theory in Sobolev Spaces 4.1 Averaged Taylor Polynomials 4.2 Error Representation 4.3 Bounds for Riesz Potentials 4.4 Bounds for the Interpolation Error 4.5 Inverse Estimates 4.6 Tensor-product Polynomial Approximation 4.7 Isoparametric Polynomial Approximation 4.8 Interpolation of Non-smooth Functions 4.9 A Discrete Sobolev Inequality 4.x Exercises 5 n-Dimensional Variational Problems 5.1 Variational Formulation of Poisson's Equation . 5.2 Variational Formulation of the Pure Neumann Problem . 5.3 Coercivity of the Variational Problem 5.4 Variational Approximation of Poisson's Equation 5.5 Elliptic Regularity Estimates 5.6 General Second-Order Elliptic Operators 5.7 Variational Approximation of General Elliptic Problems . 5.8 Negative-Norm Estimates 5.9 The Plate-Bending Biharmonic Problem 5.x Exercises 6 Finite Element Multigrid Methods 6.1 A Model Problem 6.2 Mesh-Dependent Norms 6.3 The Multigrid Algorithm 6.4 Approximation Property 6.5 W-cycle Convergence for the kth Level Iteration 6.6 V-cycle Convergence for the kth Level Iteration 6.7 Full Multigrid Convergence Analysis and Work Estimates 6.x Exercises 7 Additive Schwarz Preconditioners 7.1 Abstract Additive Schwarz Framework 7.2 The Hierarchical Basis Preconditioner 7.3 The BPX Preconditioner 7.4 The Two-level Additive Schwarz Preconditioner 7.5 Nonoverlapping Domain Decomposition Methods 7.6 The BPS Preconditioner 7.7 The Neumann-Neumann Preconditioner 7.x Exercises 8 Max-norm Estimates 8.1 Main Theorem 8.2 Reduction to Weighted Estimates 8.3 Proof of Lemma 8.2.6 8.4 Proofs of Lemmas 8.3.7 and 8.3.11 8.5 Lp Estimates (Regular Coefficients) 8.6 Lp Estimates (Irregular Coefficients) 8.7 A Nonlinear Example 8.x Exercises 9 Adaptive Meshes 9.1 A priori Estimates 9.2 Error Estimators 9.3 Local Error Estimates 9.4 Estimators for Linear Forms and Other Norms 9.5 Conditioning of Finite Element Equations 9.6 Bounds on the Condition Number 9.7 Applications to the Conjugate-Gradient Method 9.x Exercises 10 Variational Crimes 10.1 Departure from the Framework 10.2 Finite Elements with Interpolated Boundary Conditions . 10.3 Nonconforming Finite Elements 10.4 Isoparametric Finite Elements 10.x Exercises 11 Applications to Planar Elasticity 11.1 The Boundary Value Problems 11.2 Weak Formulation and Korn's Inequality 11.3 Finite Element Approximation and Locking 11.4 A Robust Method for the Pure Displacement Problem .. 11.x Exercises 12 Mixed Methods 12.1 Examples of Mixed Variational Formulations 12.2 Abstract Mixed Formulation 12.3 Discrete Mixed Formulation 12.4 Convergence Results for Velocity Approximation 12.5 The Discrete Inf-Sup Condition 12.6 Verification of the Inf-Sup Condition 12.x Exercises 13 Iterative Techniques for Mixed Methods 13.1 Iterated Penalty Method 13.2 Stopping Criteria 13.3 Augmented Lagrangian Method 13.4 Application to the Navier-Stokes Equations 13.5 Computational Examples 13.x Exercises 14 Applications of Operator-Interpolation Theory 14.1 The Real Method of Interpolation 14.2 Real Interpolation of Sobolev Spaces 14.3 Finite Element Convergence Estimates 14.4 The Simultaneous Approximation Theorem 14.5 Precise Characterizations of Regularity 14.x Exercises References Index |
标签 | |
缩略图 | ![]() |
书名 | 有限元方法的数学理论(第2版) |
副书名 | |
原作名 | |
作者 | (美)布雷 |
译者 | |
编者 | |
绘者 | |
出版社 | 世界图书出版公司 |
商品编码(ISBN) | 9787506292535 |
开本 | 24开 |
页数 | 361 |
版次 | 1 |
装订 | 平装 |
字数 | |
出版时间 | 2008-09-01 |
首版时间 | 2008-09-01 |
印刷时间 | 2008-09-01 |
正文语种 | 英 |
读者对象 | 青年(14-20岁),研究人员,普通成人 |
适用范围 | |
发行范围 | 公开发行 |
发行模式 | 实体书 |
首发网站 | |
连载网址 | |
图书大类 | 科学技术-自然科学-数学 |
图书小类 | |
重量 | 0.468 |
CIP核字 | |
中图分类号 | O241.82 |
丛书名 | |
印张 | 16 |
印次 | 1 |
出版地 | 北京 |
长 | 225 |
宽 | 150 |
高 | 18 |
整理 | |
媒质 | 图书 |
用纸 | 普通纸 |
是否注音 | 否 |
影印版本 | 原版 |
出版商国别 | CN |
是否套装 | 单册 |
著作权合同登记号 | 图字01-2008-3124 |
版权提供者 | Springer |
定价 | |
印数 | |
出品方 | |
作品荣誉 | |
主角 | |
配角 | |
其他角色 | |
一句话简介 | |
立意 | |
作品视角 | |
所属系列 | |
文章进度 | |
内容简介 | |
作者简介 | |
目录 | |
文摘 | |
安全警示 | 适度休息有益身心健康,请勿长期沉迷于阅读小说。 |
随便看 |
|
兰台网图书档案馆全面收录古今中外各种图书,详细介绍图书的基本信息及目录、摘要等图书资料。