首页  软件  游戏  图书  电影  电视剧

请输入您要查询的图书:

 

图书 黎曼几何
内容
编辑推荐

The object of this book is to familiarize the reader with the basic language of and some fundamental theorems in Riemannian Geometry.To avoid referring to previous knowledge of differentiable manifolds, we include Chapter 0, which contains those concepts and results on differentiable manifolds which are used in an essential way in the rest of the book.

内容推荐

The first four chapters of the book present the basic concepts of Riemannian Geometry(Riemannian metrics, Riemannian connections, geodesics and curvature).A good part of the study of Riemannian Geometry consists of understanding the relationship between geodesics and curvature.Jacobi fields, an essential tool for this understanding, are introduced in Chapter 5.In Chapter 6 we introduce the second fundamental form associated with an isometric immersion, and prove a generalization of the Theorem Egregium of Gauss.This allows us to relate the notion of curvature in Riemannian manifolds to the classical concept of Gaussian curvature for surfaces.

目录

Preface to the first edition

Preface to the second edition

Preface to the English edition

How to use this book

CHAPTER 0-DIFFERENTIABLE MANIFOLDS

1. Introduction

2. Differentiable manifolds;tangent space

3. Immersions and embeddings;examples

4. Other examples of manifolds,Orientation

5. Vector fields; brackets,Topology of manifolds

CHAPTER 1-RIEMANNIAN METRICS

1. Introduction

2. Riemannian Metrics

CHAPTER 2-AFFINE CONNECTIONS;RIEMANNIAN CONNECTIONS

1. Introduction

2. Affine connections

3. Riemannian connections

CHAPTER 3-GEODESICS;CONVEX NEIGHBORHOODS

1.Introduction

2.The geodesic flow

3.Minimizing properties ofgeodesics

4.Convex neighborhoods

CHAPTER 4-CURVATURE

1.Introduction

2.Curvature

3.Sectional curvature

4.Ricci curvature and 8calar curvature

4.Ricci curvature and 8calar curvature

5.Tensors 0n Riemannian manifoids

CHAPTER 5-JACOBI FIELDS

1.Introduction

2.The Jacobi equation

3.Conjugate points

CHAPTER 6-ISOMETRIC IMMERSl0NS

1.Introduction.

2.The second fundamental form

3.The fundarnental equations

CHAPTER 7-COMPLETE MANIFoLDS;HOPF-RINOW AND HADAMARD THEOREMS

1.Introduction.

2.Complete manifolds;Hopf-Rinow Theorem.

3.The Theorem of Hadamazd.

CHAPTER 8-SPACES 0F CONSTANT CURVATURE

1.Introduction

2.Theorem of Cartan on the determination ofthe metric by mebns of the curvature.

3.Hyperbolic space

4.Space forms

5.Isometries ofthe hyperbolic space;Theorem ofLiouville

CHAPTER 9一VARIATl0NS 0F ENERGY

1.Introduction.

2.Formulas for the first and second variations of enezgy

3.The theorems of Bonnet—Myers and of Synge-WeipJtein

CHAPTER 10-THE RAUCH COMPARISON THEOREM

1.Introduction

2.Ttle Theorem of Rauch.

3.Applications of the Index Lemma to immersions

4.Focal points and an extension of Rauch’s Theorem

CHAPTER 11—THE MORSE lNDEX THEOREM

1.Introduction

2.The Index Theorem

CHAPTER 12-THE FUNDAMENTAL GROUP OF MANIFOLDS 0F NEGATIVE CURVATURE

1.Introduction

2.Existence of closed geodesics

3. Preissman's Theorem

CHAPTER 13-THE SPHERE THEOREM

1. Introduction

2. The cut locus

3. The estimate of the injectivity radius

4. The Sphere Theorem

5. Some further developments

References

Index

标签
缩略图
书名 黎曼几何
副书名
原作名
作者 (葡)卡莫
译者
编者
绘者
出版社 世界图书出版公司
商品编码(ISBN) 9787506292184
开本 24开
页数 300
版次 1
装订 平装
字数
出版时间 2008-05-01
首版时间 2008-05-01
印刷时间 2008-05-01
正文语种
读者对象 研究人员,普通成人
适用范围
发行范围 公开发行
发行模式 实体书
首发网站
连载网址
图书大类 科学技术-自然科学-数学
图书小类
重量 0.402
CIP核字
中图分类号 O186.12
丛书名
印张 13.5
印次 1
出版地 北京
226
150
16
整理
媒质 图书
用纸 普通纸
是否注音
影印版本 原版
出版商国别 CN
是否套装 单册
著作权合同登记号 图字01-2008-1337
版权提供者 Springer
定价
印数
出品方
作品荣誉
主角
配角
其他角色
一句话简介
立意
作品视角
所属系列
文章进度
内容简介
作者简介
目录
文摘
安全警示 适度休息有益身心健康,请勿长期沉迷于阅读小说。
随便看

 

兰台网图书档案馆全面收录古今中外各种图书,详细介绍图书的基本信息及目录、摘要等图书资料。

 

Copyright © 2004-2025 xlantai.com All Rights Reserved
更新时间:2025/5/19 18:38:35