本书在n维欧氏空间中建立Lebesgue测度和积分的理论,突出体现实变函数的基本思想。全书包括:集合、点集、Lebesgue测度、可测函数、Lebesgue积分、微分与不定积分、Lp空间共七章。每一小节讲述概念、定理与例题后,均附有精心挑选的配套基本习题,每一章后均附有整整一节的例题选讲,介绍实变函数解题的各种典型方法与重要技巧,每一章后还列出大量的习题供读者去研究与探索。
本书可作为高等院校数学专业的教材,也可供相关专业人员参考。
图书 | 实变函数 |
内容 | 编辑推荐 本书在n维欧氏空间中建立Lebesgue测度和积分的理论,突出体现实变函数的基本思想。全书包括:集合、点集、Lebesgue测度、可测函数、Lebesgue积分、微分与不定积分、Lp空间共七章。每一小节讲述概念、定理与例题后,均附有精心挑选的配套基本习题,每一章后均附有整整一节的例题选讲,介绍实变函数解题的各种典型方法与重要技巧,每一章后还列出大量的习题供读者去研究与探索。 本书可作为高等院校数学专业的教材,也可供相关专业人员参考。 目录 1 集合 1.1 集合及其运算 1.2 映射 1.3 对等与基数 1.4 可数集 1.5 连续基数 1.6 例题选讲 习题一 2 点集 2.1 n维欧氏空间 2.2 开集与内点 2.3 闭集与极限点 2.4 闭集套定理与覆盖定理 2.5 函数连续性 2.6 点集间的距离 2.7 Cantor集 2.8 稠密性 2.9 例题选讲 习题二 3 Lebesgue测度 3.1 广义实数集 3.2 外测度 3.3 可测集 3.4 可测集类 3.5 不可测集 3.6 例题选讲 习题三 4 可测函数 4.1 可测函数的定义及性质 4.2 Egoroff(叶果洛夫)定理 4.3 依测度收敛性 4.4 Lusin(鲁津)定理 4.5 例题选讲 习题四 5 Lebesgue积分 5.1 非负可测简单函数的积分 5.2 非负可测函数的积分 5.3 一般可测函数的积分 5.4 控制收敛定理 5.5 可积函数与连续函数 5.6 Lebesgue积分与Riemann积分 5.7 重积分与累次积分 5.8 例题选讲 习题五 6 微分与不定积分 6.1 单调函数的可微性 6.2 有界变差函数 6.3 不定积分的微分 6.4 绝对连续函数 6.5 例题选讲 习题六 7 Lp空间 7.1 Lp空间的定义与有关不等式 7.2 Lp空间(1≤p≤∞)的完备性 7.3 Lp空间(1≤p<∞)的可分性 7.4 例题选讲 习题七 |
标签 | |
缩略图 | ![]() |
书名 | 实变函数 |
副书名 | |
原作名 | |
作者 | 张建平//丘京辉 |
译者 | |
编者 | |
绘者 | |
出版社 | 东南大学出版社 |
商品编码(ISBN) | 9787564115340 |
开本 | 16开 |
页数 | 154 |
版次 | 1 |
装订 | 平装 |
字数 | 196 |
出版时间 | 2009-05-01 |
首版时间 | 2009-05-01 |
印刷时间 | 2009-05-01 |
正文语种 | 汉 |
读者对象 | 青年(14-20岁),普通成人 |
适用范围 | |
发行范围 | 公开发行 |
发行模式 | 实体书 |
首发网站 | |
连载网址 | |
图书大类 | 科学技术-自然科学-数学 |
图书小类 | |
重量 | 0.244 |
CIP核字 | |
中图分类号 | O174.1 |
丛书名 | |
印张 | 10 |
印次 | 1 |
出版地 | 江苏 |
长 | 238 |
宽 | 168 |
高 | 7 |
整理 | |
媒质 | 图书 |
用纸 | 普通纸 |
是否注音 | 否 |
影印版本 | 原版 |
出版商国别 | CN |
是否套装 | 单册 |
著作权合同登记号 | |
版权提供者 | |
定价 | |
印数 | 2500 |
出品方 | |
作品荣誉 | |
主角 | |
配角 | |
其他角色 | |
一句话简介 | |
立意 | |
作品视角 | |
所属系列 | |
文章进度 | |
内容简介 | |
作者简介 | |
目录 | |
文摘 | |
安全警示 | 适度休息有益身心健康,请勿长期沉迷于阅读小说。 |
随便看 |
|
兰台网图书档案馆全面收录古今中外各种图书,详细介绍图书的基本信息及目录、摘要等图书资料。