本书在n维欧氏空间中建立Lebesgue测度和积分的理论,突出体现实变函数的基本思想。全书包括:集合、点集、Lebesgue测度、可测函数、Lebesgue积分、微分与不定积分、Lp空间共七章。每一小节讲述概念、定理与例题后,均附有精心挑选的配套基本习题,每一章后均附有整整一节的例题选讲,介绍实变函数解题的各种典型方法与重要技巧,每一章后还列出大量的习题供读者去研究与探索。
本书可作为高等院校数学专业的教材,也可供相关专业人员参考。
| 图书 | 实变函数 |
| 内容 | 编辑推荐 本书在n维欧氏空间中建立Lebesgue测度和积分的理论,突出体现实变函数的基本思想。全书包括:集合、点集、Lebesgue测度、可测函数、Lebesgue积分、微分与不定积分、Lp空间共七章。每一小节讲述概念、定理与例题后,均附有精心挑选的配套基本习题,每一章后均附有整整一节的例题选讲,介绍实变函数解题的各种典型方法与重要技巧,每一章后还列出大量的习题供读者去研究与探索。 本书可作为高等院校数学专业的教材,也可供相关专业人员参考。 目录 1 集合 1.1 集合及其运算 1.2 映射 1.3 对等与基数 1.4 可数集 1.5 连续基数 1.6 例题选讲 习题一 2 点集 2.1 n维欧氏空间 2.2 开集与内点 2.3 闭集与极限点 2.4 闭集套定理与覆盖定理 2.5 函数连续性 2.6 点集间的距离 2.7 Cantor集 2.8 稠密性 2.9 例题选讲 习题二 3 Lebesgue测度 3.1 广义实数集 3.2 外测度 3.3 可测集 3.4 可测集类 3.5 不可测集 3.6 例题选讲 习题三 4 可测函数 4.1 可测函数的定义及性质 4.2 Egoroff(叶果洛夫)定理 4.3 依测度收敛性 4.4 Lusin(鲁津)定理 4.5 例题选讲 习题四 5 Lebesgue积分 5.1 非负可测简单函数的积分 5.2 非负可测函数的积分 5.3 一般可测函数的积分 5.4 控制收敛定理 5.5 可积函数与连续函数 5.6 Lebesgue积分与Riemann积分 5.7 重积分与累次积分 5.8 例题选讲 习题五 6 微分与不定积分 6.1 单调函数的可微性 6.2 有界变差函数 6.3 不定积分的微分 6.4 绝对连续函数 6.5 例题选讲 习题六 7 Lp空间 7.1 Lp空间的定义与有关不等式 7.2 Lp空间(1≤p≤∞)的完备性 7.3 Lp空间(1≤p<∞)的可分性 7.4 例题选讲 习题七 |
| 标签 | |
| 缩略图 | ![]() |
| 书名 | 实变函数 |
| 副书名 | |
| 原作名 | |
| 作者 | 张建平//丘京辉 |
| 译者 | |
| 编者 | |
| 绘者 | |
| 出版社 | 东南大学出版社 |
| 商品编码(ISBN) | 9787564115340 |
| 开本 | 16开 |
| 页数 | 154 |
| 版次 | 1 |
| 装订 | 平装 |
| 字数 | 196 |
| 出版时间 | 2009-05-01 |
| 首版时间 | 2009-05-01 |
| 印刷时间 | 2009-05-01 |
| 正文语种 | 汉 |
| 读者对象 | 青年(14-20岁),普通成人 |
| 适用范围 | |
| 发行范围 | 公开发行 |
| 发行模式 | 实体书 |
| 首发网站 | |
| 连载网址 | |
| 图书大类 | 科学技术-自然科学-数学 |
| 图书小类 | |
| 重量 | 0.244 |
| CIP核字 | |
| 中图分类号 | O174.1 |
| 丛书名 | |
| 印张 | 10 |
| 印次 | 1 |
| 出版地 | 江苏 |
| 长 | 238 |
| 宽 | 168 |
| 高 | 7 |
| 整理 | |
| 媒质 | 图书 |
| 用纸 | 普通纸 |
| 是否注音 | 否 |
| 影印版本 | 原版 |
| 出版商国别 | CN |
| 是否套装 | 单册 |
| 著作权合同登记号 | |
| 版权提供者 | |
| 定价 | |
| 印数 | 2500 |
| 出品方 | |
| 作品荣誉 | |
| 主角 | |
| 配角 | |
| 其他角色 | |
| 一句话简介 | |
| 立意 | |
| 作品视角 | |
| 所属系列 | |
| 文章进度 | |
| 内容简介 | |
| 作者简介 | |
| 目录 | |
| 文摘 | |
| 安全警示 | 适度休息有益身心健康,请勿长期沉迷于阅读小说。 |
| 随便看 |
|
兰台网图书档案馆全面收录古今中外各种图书,详细介绍图书的基本信息及目录、摘要等图书资料。