首页  软件  游戏  图书  电影  电视剧

请输入您要查询的图书:

 

图书 仿生模式识别与多权值神经元
内容
编辑推荐

王守觉编著的《仿生模式识别与多权值神经元》简介:This book is the second one after the first book named "First Step to Multi-Dimensional Space Biomimetic Informatics"(in Chinese), which are both illuminating the novel biomimetic high-dimensional space geometry computing theory, but this book is more detailed and systemic. This book consists of three parts, statistical pattern recognition, biomimetic pattern recognition and multi-weight neuron. Biomimetic Pattern Recognition and Multi-weight Neuron are proposed by academician Shoujue Wang at the start of representing digital data over hundreds of dimensionality as points, and developed for five years with many applications in many fields so far.

目录

Part I Review of Statistics Pattern Recognition

Chapter 1 Introduction of Pattern Recognition

1.1 Pattern Recognition Concept

1.2 Pattern Recognition System Biasic Processes

1.3 A Brief Survey of Pattern Recognition Appro aches

1.4 Scope and Organization

Chapter 2 Kernel of Statistical Pattern Recognition and Pre-Precessing

2.1 Question Arise

 2.1.1 Question Expression

 2.1.2 Empirical Risk Minimization

 2.1.3 Generalization Ability and Complexity

2.2 Kernel of Statistical Pattern Recognition

 2.2.1 Vapnik-Chervonenkis Dimension

 2.2.2 The Bounds of Generalization Ability

 2.2.3 The Minimization of Structural Risk

2.3 Preprocessin9

2.4 Feature Extraction and Feature Selection

 2.4.1 Curse of Dimensionality

 2.4.2 Feature Extraction

 2.4.3 Feature Selection

2.5 Support Vector Manchine

 2.5.1 The Optimal Hyperplane Under Linearly Separable

 2.5.2 The Soft Spacing Under Linearly Nonseparable

 2.5.3 The Kernel Function Under Non-Linear Case

 2.5.4 Support Vector Machine's Traits and Advantages

References

Part ]I Biomimetic Pattern Recognition

Chapter 3 Introduction

Chapter 4 The Foundation of Biomimetic Pattern Recognition

4.1 Overview of High-Dimensional Biomimetic Informatics

 4.1.1 The Proposal of the Problem of Computer Imaginal Thinking

 4.1.2 The Principle of High-Dimensional Biomimetic Informatics

4.2 Basic Contents of High-Dimensional Biomimetic Informatics

4.3 Main Features of High-Dimensional giomimetic Informatics

4 4 Concepts and Mathematical Symbols In High-Dimensional Biomimetic Informatics

 4.4.1 Concepts and Definitions

 4.4.2 Mathematical Symbols

 4.4.3 Symbolic Computing Methods in Resolving Geometry Computing Problems

 4.4.4 Several Applications in Solving Complicated Geometry Computing Problems

4.5 Some Applications

 4.5.1 Blurred Image Restoration

 4.5.2 Uneven Lighting Image Correction

 4.5.3 Removing Facial Makeup Disturbances

Chapter 5 The Theory of Biomimetic Pattern Recognition

5.1 The Concept of Biomimetic Pattern Recognition

5.2 The Choice of The Name

5.3 The Developments of Biomimetic Pattern Recognition

5.4 Covering.The Concept of Recognition in Biomimetic Pattern Recognition

5.5 The Principle of Homology-Continuity: The Starting Point of Biomimetic Pattern Recognition

5.6 Expansionary Product

5.7 Experiments

 5.7.1 The Architecture of the Face Recognition System

 5.7.2 Umist Face Data

 5.7.3 Pre-treatment

 5.7.4 The Realization of SVM Face Recognition Algorithms

 5.7.5 The Realization of BPR Face Recognition Algorithms

 5.7.6 Experiments Results and Analyzes

5.8 Summary

Chapter 6 Applications

6.1 Object Recognition

6 2 A Multi-Camera Human-Face Personal Identification System

6.3 A Recognition System For Speaker-Independent Continuous Speech

6.4 Summary

References

Part Ⅲ Multi-Weight Neurons and Networks

Chapter 7 History And Definations of Artificial Neural Networks

7.1 From Biological Neural Networks to Artificial Neural Networks and Its Development

7.2 Some Definitions and Concepts of Artificial Neural Networks

7.3 Unifications and Divergences Between Array-Processors and Neural Networks

7.4 Artificial Neural Networks' Effects on Nanoelectronical Computational Technology

Chapter 8 Geometric Concepts of Artificial Neurons

8.1 Mathematical Expressions of Common Neurons and Their Geometric Concepts

8.2 General Mathematical Model of Common Neurons and Its Geometric Concept

8.3 Direction Basis Function Neuron and Its Geometric Concept

8.4 Multi-Threshold Neurons and Networks

Chapter 9 Multi-Weight Neurons and Their Applications

9.1 General Mathematical Expression of Multi-Weight Neurons' Functions

9.2 Interchangeabilities of Points, Vectors, Hyper Planes in High-Dimensional Space

9.3 Effect of High-Dimensional Point Distribution Analysis in Information Technology

9.4 Multi-Weight Neurons are Computing Tools on High-Dimensional Point Distribution Analysis

9.5 Applications of Multi-Weight Neurons and Networks On Biomimetic Pattern Recognition

References

Appendix Experts' Evaluation to The Book

标签
缩略图
书名 仿生模式识别与多权值神经元
副书名
原作名
作者 王守觉//刘扬阳//来疆亮//刘星星
译者
编者
绘者
出版社 国防工业出版社
商品编码(ISBN) 9787118080810
开本 16开
页数 167
版次 1
装订 平装
字数 193
出版时间 2012-12-01
首版时间 2012-12-01
印刷时间 2012-12-01
正文语种
读者对象 普通青少年,普通成人
适用范围
发行范围 公开发行
发行模式 实体书
首发网站
连载网址
图书大类 计算机-操作系统
图书小类
重量 0.31
CIP核字
中图分类号 TP391.4
丛书名
印张 11.25
印次 1
出版地 北京
230
170
9
整理
媒质 图书
用纸 普通纸
是否注音
影印版本 原版
出版商国别 CN
是否套装 单册
著作权合同登记号
版权提供者
定价
印数 3000
出品方
作品荣誉
主角
配角
其他角色
一句话简介
立意
作品视角
所属系列
文章进度
内容简介
作者简介
目录
文摘
安全警示 适度休息有益身心健康,请勿长期沉迷于阅读小说。
随便看

 

兰台网图书档案馆全面收录古今中外各种图书,详细介绍图书的基本信息及目录、摘要等图书资料。

 

Copyright © 2004-2025 xlantai.com All Rights Reserved
更新时间:2025/5/8 12:43:22