首页  软件  游戏  图书  电影  电视剧

请输入您要查询的图书:

 

图书 代数几何中的解析方法(精)
内容
内容推荐
This volume is an expansion of lectures given by the author at the Park City Mathematics Institute in 2008 as well as in other places. The main purpose of the book is to describe analytic techniques which are useful to study questions such as linear series, multiplier ideals and vanishing theorems for algebraic vector bundles. The exposition tries to be as condensed as possible, assuming that the reader is already somewhat acquainted with the basic concepts pertaining to sheaf theory,homological algebra and complex differential geometry. In the final chapters, some very recent questions and open problems are addressed, for example results related to the finiteness of the canonical ring and the abundance conjecture,as well as results describing the geometric structure of Kahler varieties and their positive cones.
目录
Introduction
Chapter 1. Preliminary Material: Cohomology, Currents
1.A. Dolbeault Cohomology and Sheaf Cohomology
1.B. Plurisuhharmonic Functions
1.C. Positive Currents
Chapter 2. Lelong numbers and Intersection Theory
2.A. Multiplication of Currents and Monge-Ampere Operators
2.B. Lelong Numbers
Chapter 3. Hermitian Vector Bundles,Connections and Curvature
Chapter 4. Bochner Technique and Vanishing Theorems
4.A. Laplace-Beltrami Operators and Hodge Theory
4.B. Serre Duality Theorem
4.CBochner-Kodaira-Nakano Identity on Kahler Manifolds
4.D. Vanishing Theorems
Chapter 5. L2 Estimates and Existence Theorems
5.A. Basic L2 Existence Theorems
5.B. Multiplier Ideal Sheaves and Nadel Vanishing Theorem
Chapter 6. Numerically Effective andPseudo-effective Line Bundles
6.A. Pseudo-effective Line Bundles and Metrics with Minimal Singularities
6.B. Nef Line Bundles
6.C. Description of the Positive Cones
6.D. The Kawamat~-Viehweg Vanishing Theorem
6.E. A Uniform Global Generation Property due to Y.T. Siu
Chapter 7. A Simple Algebraic Approach to Fujita's Conjecture
Chapter 8. Holomorphic Morse Inequalities
8.A. General Analytic Statement on Compact Complex Manifolds
8.B. Algebraic Counterparts of the Holomorphic Morse Inequalities
8.C. Asymptotic Cohomology Groups
8.D. Transcendental Asymptotic Cohomology Functions
Chapter 9. Effective Version of Matsusaka's Big Theorem
Chapter 10. Positivity Concepts for Vector Bundles
Chapter 11. Skoda's L2 Estimates for Surjective Bundle Morphisms
11.A. Surjectivity and Division Theorems
11.B. Applications to Local Algebra: the Brianqon-Skoda Theorem
Chapter 12. The Ohsawa-Takegoshi L2 Extension Theorem
12.A. The Basic a Priori Inequality
12.B. Abstract L2 Existence Theorem for Solutions of O-Equations
12.C. The L2 Extension Theorem
12.D. Skoda's Division Theorem for Ideals of Holomorphic Functions
Chapter 13. Approximation of Closed Positive Currents by Analytic Cycles
13.A. Approximation of Plurisubharmonic Functions Via Bergman kernels
13.B. Global Approximation of Closed (1,1)-Currents on a Compact Complex Manifold
13.C. Global Approximation by Divisors
13.D. Singularity Exponents and log Canonical Thresholds
13.E. Hodge Conjecture and approximation of (p, p)- currents
Chapter 14. Subadditivity of Multiplier Ideals and Fujita's Approximate Zariski Decomposition
Chapter 15. Hard Lefschetz Theorem with Multiplier Ideal Sheaves
15.A. A Bundle Valued Hard Lefschetz Theorem
15.B. Equisingular Approximations of Quasi Plurisubharmonic Functions
15.C. A Bochner Type Inequality
15.D. Proof of Theorem 15.1
15.E. A Counterexample
Chapter 16. Invariance of Plurigenera of Projective Varieties
Chapter 17. Numerical Characterization of the K~ihler Cone
17.A. Positive Classes in Intermediate (p, p)-bidegrees
17.B. Numerically Positive Classes of Type (1,1)
17.C. Deformations of Compact K~hler Manifolds
Chapter 18. Structure of the Pseudo-effective Cone and Mobile Intersection Theory
18.A. Classes of Mobile Curves and of Mobile (n- 1, n-1)-currents
18.B. Zariski Decomposition and Mobile Intersections
18.C. The Orthogonality Estimate
18.D. Dual of the Pseudo-effective Cone
18.E. A Volume Formula for Algebraic (1,1)-Classes on Projective Surfaces
Chapter 19. Super-canonical Metrics and Abundance
19.A. Construction of Super-canonical Metrics
19.B. Invariance of Plurigenera and Positivity of Curvature of Super-canonical Metrics
19.C. Tsuji's Strategy for Studying Abundance
Chapter 20. Siu's Analytic Approach and Paun's Non Vanishing Theorem
References
标签
缩略图
书名 代数几何中的解析方法(精)
副书名
原作名
作者 (法)Jean-Pierre Demailly
译者
编者
绘者
出版社 高等教育出版社
商品编码(ISBN) 9787040305319
开本 16开
页数 231
版次 1
装订 精装
字数 350
出版时间 2010-09-01
首版时间 2010-09-01
印刷时间 2021-01-01
正文语种
读者对象 本科及以上
适用范围
发行范围 公开发行
发行模式 实体书
首发网站
连载网址
图书大类 科学技术-自然科学-数学
图书小类
重量 476
CIP核字 2010173117
中图分类号 O187
丛书名
印张 15
印次 3
出版地 北京
246
174
15
整理
媒质
用纸
是否注音
影印版本
出版商国别 CN
是否套装
著作权合同登记号
版权提供者
定价
印数
出品方
作品荣誉
主角
配角
其他角色
一句话简介
立意
作品视角
所属系列
文章进度
内容简介
作者简介
目录
文摘
安全警示 适度休息有益身心健康,请勿长期沉迷于阅读小说。
随便看

 

兰台网图书档案馆全面收录古今中外各种图书,详细介绍图书的基本信息及目录、摘要等图书资料。

 

Copyright © 2004-2025 xlantai.com All Rights Reserved
更新时间:2025/5/12 0:16:34