图书 | 高振荡微分方程几何积分法(英文版)(精) |
内容 | 内容推荐 本书系统阐述了高振荡微分方程几何积分法。内容包括:保振荡积分法分析;连续级ERKN积分法;ERKN积分法的收敛性与稳定性分析;函数拟合能量守恒积分法;指数配置法;保体积指数积分法;一级ERKN积分法解半线性波方程的误差界;线性拟合守恒或耗散积分法;解Klein–Gordon方程的能量守恒积分法;解Klein–Gordon方程的Hermite–Birkhoff积分法;解高维哈密顿波方程的连续级leap-frog格式;半解析指数积分法以及能量守恒积分法的长期行为分析。这些新的几何积分法适用于求解来自于科学与工程领域的高振荡微分方程。 目录 Chapter 1 Oscillation-Preserving Integrators for Highly Oscillatory Systems of Second-Order ODEs 1.1 Introduction 1.2 Standard Runge-Kutta-Nystr?m Schemes from the Matrix-Variation of-Constants Formula 1.3 ERKN Integrators and ARKN Methods Based on the Matrix-Variation of-Constants Formula 1.3.1 ARKN Integrators 1.3.2 ERKN Integrators 1.4 Oscillation-Preserving Integrators 1.5 Towards Highly Oscillatory Nonlinear Hamiltonian Systems 1.5.1 SSMERKN Integrators 1.5.2 Trigonometric Fourier Collocation Methods 1.5.3 The AAVF Method and AVF Formula 1.6 Other Concerns Relating to Highly Oscillatory Problems 1.6.1 Gautschi-Type Methods 1.6.2 General ERKN Methods for(1.1) 1.6.3 Towards the Application to Se milinear K G Equations 1.7 Numerical Experiments 1.8 Conclusions and Discussion References Chapter 2 Continuous-Stage ERKN Integrators for Second-Order ODEs with Highly Oscillatory Solutions 2.1 Introduction 2.2 Extended Runge-Kutta-Nystr?m Methods 2.3 Continuous-Stage ERK N Methods and Order Conditions 2.4 Energy-Preserving Conditions and Symmetric Conditions 2.5 Linear Stability Analysis 2.6 Construction of CSERKN Methods 2.6.1 The Case of Order Two 2.6.2 The Case of Order Four 2.7 Numerical Experiments 2.8 Conclusions and Discussions References Chapter 3 Stability and Convergence Analysis of ERK N Integrators for Second-Order ODEs with Highly Oscillatory Solutions 3.1 Introduction 3.2 Nonlinear Stability and Convergence Analysis for ERK N Integrators 3.2.1 Nonlinear Stability of the Matrix-Variation-of-Constants Formula 3.2.2 Nonlinear Stability and Convergence of ERKN Integrators 3.3 ERKN Integrators with Fourier Pseudospectral Discretisation for Semilinear Wave Equations 3.3.1 Time Discretisation: ERKN Time Integrators 3.3.2 Spatial Discretisation: Fourier Pseudospectral Method 3.3.3 Error Bounds of the ERKN-FP Method (3.57)-(3.58) 3.4 Numerical Experiments 3.5 Conclusions References Chapter 4 Functionally-Fitted Energy-Preserving Integrators for Poisson Systems 4.1 Introduction 4.2 Functionally-Fitted EP Integrators 4.3 Implementation Issues 4.4 The Existence, Uniqueness and Smoothness 4.5 Algebraic Order 4.6 Practical FFEP Integrators 4.7 Numerical Experiments Chapter 5 Exponential Collocation Methods for Conservative or Dissipative Systems Chapter 6 Volume-Preserving Exponential Integrators Chapter 7 Global Error Bounds of One-Stage Explicit ERK N Integrators for Semilinear Wave Equations References Chapter 8 Linearly-Fitted Conservative (Dissipative) Schemes for Nonlinear Wave Equations Chapter 9 Energy-Preserving Schemes for High-Dimensional Nonlinear KG Equations Chapter 10 High-Order Symmetric Hermite-Birkhoff Time Integrators for Semilinear KG Equations Chapter 11 Symplectic Approximations for Efficiently Solving Semilinear KG Equations Chapter 12 Continuous-Stage Leap-Frog Schemes for Semilinear Hamiltonian Wave Equations Chapter 13 Semi-Analytical ERKN Integrators for Solving High Dimensional Nonlinear Wave Equations Chapter 14 Long-Time Momentum and Actions Behaviour of Energy Preserving Methods for Wave Equations Index |
标签 | |
缩略图 | ![]() |
书名 | 高振荡微分方程几何积分法(英文版)(精) |
副书名 | |
原作名 | |
作者 | |
译者 | |
编者 | Xinyuan Wu//Bin Wang |
绘者 | |
出版社 | 科学出版社 |
商品编码(ISBN) | 9787030671127 |
开本 | 16开 |
页数 | 450 |
版次 | 1 |
装订 | 精装 |
字数 | |
出版时间 | 2020-01-01 |
首版时间 | 2020-01-01 |
印刷时间 | 2020-01-01 |
正文语种 | 英 |
读者对象 | 本科及以上 |
适用范围 | |
发行范围 | 公开发行 |
发行模式 | 实体书 |
首发网站 | |
连载网址 | |
图书大类 | 科学技术-自然科学-数学 |
图书小类 | |
重量 | 734 |
CIP核字 | |
中图分类号 | |
丛书名 | |
印张 | 28.13 |
印次 | 1 |
出版地 | 北京 |
长 | 240 |
宽 | 160 |
高 | 27 |
整理 | |
媒质 | |
用纸 | |
是否注音 | |
影印版本 | |
出版商国别 | CN |
是否套装 | |
著作权合同登记号 | |
版权提供者 | |
定价 | |
印数 | |
出品方 | |
作品荣誉 | |
主角 | |
配角 | |
其他角色 | |
一句话简介 | |
立意 | |
作品视角 | |
所属系列 | |
文章进度 | |
内容简介 | |
作者简介 | |
目录 | |
文摘 | |
安全警示 | 适度休息有益身心健康,请勿长期沉迷于阅读小说。 |
随便看 |
|
兰台网图书档案馆全面收录古今中外各种图书,详细介绍图书的基本信息及目录、摘要等图书资料。