首页  软件  游戏  图书  电影  电视剧

请输入您要查询的图书:

 

图书 抽象代数讲义(第2卷)
内容
编辑推荐

The present volume is the second in the author's series of three dealing with abstract algebra. For an understanding of this volume a certain familiarity with the basic concepts treated in Volume I£ogroups, rings, fields, homomorphisms, is presup-posed. However, we have tried to make this account of linear algebra independent of a detailed knowledge of our first volume.References to specific results are given occasionally but some of the fundamental concepts needed have been treated again. In short, it is hoped that this volume can be read with complete understanding by any 'student who is mathematically sufficiently mature and who has a familiarity with the standard notions of modern algebra.

目录

CHAPTER I£oFINITE DIMENSIONAL VECTOR SPACES

SECTION

1. Abstract vector spaces

2. Right vector spaces

3. o-modules

4. Linear dependence

S. Invariance of dimensionality

6. Bases and matrices

7. Applications to matrix theory

8. Rank of a set of vectors

9. Factor spaces

10. Algebra of subspaces

11. Independent subspaces, direct sums

CHAPTER II£oLINEAR TRANSFORMATIONS

1. Definition and examples

2. Compositions of linear transformations

3. The matrix of a linear transformation

4. Compositions of matrices

5. Change of basis. Equivalence and similarity of matrices

6. Rank space and null space of a linear transformation£?

7. Systems of linear equations

8. Linear transformations in right vector spaces

9. Linear functions

10. Duality between a finite dimensional space and its conjugate space

11. Transpose of a linear transformation

12. Matrices of the transpose

13. Projections

CHAPTER III£oTHE THEORY OF A SINGLE LINEAR TRANSFORMATION

1. The minimum polynomial of a linear transformation

2. Cyclic subspaces

ECTION                                                   ]

3. Existence of a vector whose order is the minimum polynomial.

4. Cyclic linear transformations .

5. The ~[X]-module determined by a linear transformation.

6. Finitely generated 0-modules, 0, a principal ideal domain

7. Normalization of the generators of~ and of 92

8. Equivalence of matrices with elements in a principal ideal domain

9. Structure of finitely generated 0-modules

10. Invariance theorems

11. Decomposition of a vector space relative to a linear transformation

12. The characteristic and minimum polynomials

13. Direct proof of Theorem 13

14. Formal properties of the trace and the characteristic polynomial

15. The ring of o-endomorphisms of a cyclic 0-m0dule

16. Determination of the ring of o-endomorphisms of a finitely generated 0-module, 0 principal

17. The linear transformations which commute with a given lin- ear transformation

18. The center of the ring

CHAPTER IV: SETS OF LINEAR TRANSFORMATIONS

1. Invariant subspaces

2. Induced linear transformations

3. Composition series

4. Decomposability

5. Complete reducibility

6. Relation to the theory of operator groups and the theory of modules

7. Reducibility, decomposability, complete reducibility for a single linear transformation

8. The primary components of a space relative to a linear trans- formation

9. Sets of commutative linear transformations

CHAPTER V: BILINEAR FORMS

1. Bilinear forms

2. Matrices of a bilinear form

SECTION

3. Non-degenerate forms

4. Transpose of a linear transformation relative to a pair of bilinear forms

5. Another relation between linear transformations and bilinear forms

6. Scalar products

7. Hermitian scalar products

8. Matrices of hermidan scalar products

9. Symmetric and hermitian scalar products over special division rings

10. Alternate scalar products

11. Witt's theorem

12. Non-alternate skew-symmetric forms

CHAPTER VI: EUCLIDEAN AND UNITARY SPACES

1. Cartesian bases

2. Linear transformations and scalar products

3. Orthogonal complete reducibility

4. Symmetric, skew and orthogonal linear transformations

5. Canonical matrices for symmetric and skew linear transformations

6. Commutative symmetric and skew linear transformations

7. Normal and orthogonal linear transformations

8. Semi-definite transformations

9. Polar factorization of an arbitrary linear transformation

10. Unitary geometry

11. Analytic functions of linear transformations

CHAPTER VII: PRODUCTS OF VECTOR SPACES

1. Product groups of vector spaces

2. Direct products of linear transformations

3. Two-sided vector spaces

4. The Kronecker product

5. Kronecker products of linear transformations and of matrices

6. Tensor spaces

7. Symmetry classes of tensors

8. Extension of the field of a vector space

9. A theorem on similarity of sets of matrices

SECTION

10. Alternative definition of an algebra. Kronecker product of algebras

CHAPTER VIII; THE RING OF LINEAR TRANSFORMATIONS

1. Simplicity of

2. Operator mcthods

3. The left ideals of

4. Right ideals

5. Isomorphisms of rings of lincar transformations

CHAPTER IX: INFINITE DIMENSIONAL VECTOR SPACES

1. Existence of a basis 

2. Invariancc of dimcnsi0nality

3. Subspaccs

4. Linear transformations and matrices

5. Dimcnsionality of the conjugatc space

6. Finite topology for linear transformations

7. Total subspaccs of

8. Dual spaccs. Kronccker products

9. Two-sided ideals in the ring of linear transformations

10. Dcnsc rings of linear transformations

11. Isomorphism theorems

12. Anti-automorphisms and scalar products

13. Schur's Icmma. A general density theorem

14. Irreducible algebras of linear transformations

Index

标签
缩略图
书名 抽象代数讲义(第2卷)
副书名
原作名
作者 Nathan Jacobson
译者
编者
绘者
出版社 世界图书出版公司
商品编码(ISBN) 9787506200615
开本 24开
页数 280
版次 1
装订 平装
字数
出版时间 2000-12-01
首版时间 2000-12-01
印刷时间 2000-12-01
正文语种
读者对象 青年(14-20岁),研究人员,普通成人
适用范围
发行范围 公开发行
发行模式 实体书
首发网站
连载网址
图书大类 科学技术-自然科学-数学
图书小类
重量 0.336
CIP核字
中图分类号
丛书名
印张 12.5
印次 1
出版地 北京
222
147
12
整理
媒质 图书
用纸 普通纸
是否注音
影印版本 原版
出版商国别 CN
是否套装 单册
著作权合同登记号
版权提供者
定价
印数
出品方
作品荣誉
主角
配角
其他角色
一句话简介
立意
作品视角
所属系列
文章进度
内容简介
作者简介
目录
文摘
安全警示 适度休息有益身心健康,请勿长期沉迷于阅读小说。
随便看

 

兰台网图书档案馆全面收录古今中外各种图书,详细介绍图书的基本信息及目录、摘要等图书资料。

 

Copyright © 2004-2025 xlantai.com All Rights Reserved
更新时间:2025/5/17 19:15:13