首页  软件  游戏  图书  电影  电视剧

请输入您要查询的图书:

 

图书 硫化矿浮选电化学(精)
内容
编辑推荐

本书作者采用不同电化学研究方法,包括腐蚀电化学研究方法,浮选电化学热力学平衡计算,表面分析技术,半导体能带理论,特别是分子轨道理论,针对硫化矿浮选过程中的电化学现象进行了详细的研究,本书就是对这些工作的总结和提炼。

本书适合从事表面化学、电化学和矿物加工基础研究和应用技术研究的高校师生、科研人员和工程技术人员阅读参考。

内容推荐

本书系统地总结了作者及其研究团队近年来在硫化矿浮选领域的研究工作。作者采用不同电化学研究方法,包括腐蚀电化学研究方法,浮选电化学热力学平衡计算,表面分析技术,半导体能带理论,特别是分子轨道理论,针对硫化矿浮选过程中的电化学现象进行了详细的研究,本书就是对这些工作的总结和提炼。本书的研究内容涵盖了不同浮选体系中硫化矿的无捕收剂浮选行为和捕收剂诱导浮选行为,其中有关硫化矿浮选的腐蚀电化学、机械电化学以及分子轨道理论研究是硫化矿浮选电化学领域全新的研究内容,将有助于读者更为全面、深入地理解硫化矿浮选的原理和流程。本书中列出的有关硫化矿浮选电化学应用的实例表明,浮选电化学具有非常广阔的应用前景。

本书适合从事表面化学、电化学和矿物加工基础研究和应用技术研究的高校师生、科研人员和工程技术人员阅读参考。

目录

Chapter 1 General Review of Electrochemistry of Flotation of Sulphide Minerals

 1.1 Three Periods of Flotation of Sulphide Minerals

 1.2 Natural Floatability and Collectorless Flotation of Sulphide Minerals

 1.3 Role of Oxygen and Oxidation of Sulphide Minerals in Flotation

 1.4 Interactions between Collector and Sulphide Minerals and Mixed Potential Model

 1.5 Effect of Semiconductor Property of Sulphide Mineral on Its Electrochemical Behavior

 1.6 Electrochemical Behaviors in Grinding System

 1.7 The Purpose of This Book

Chapter 2 Natural Floatability and Collectorless Flotation of Sulphide Minerals

 2.1 Crystal Structure and Natural Floatability

 2.2 Collectorless Flotation

2.2.1 Effect of Pulp Potential on Flotation at Certain pH

2.2.2 Pulp Potential and pH Dependence of Collectorless Floatability

 2.3 Electrochemical Equilibriums of the Surface Oxidation and Flotation of Sulphide Minerals

2.3.1 The Surface Oxidation of Sulphide Minerals and Nernst Equation

2.3.2 Electrochemical Equilibriums in Collectorless Flotation

2.3.3 Eh-pH Diagrams of Potential and pH Dependence of Flotation

 2.4 Electrochemical Determination of Surface Oxidation Products of Sulphide Minerals

 2.5 Surface Analysis of Oxidation of Sulphide Minerals

Chapter 3 Collectorless Flotation in the Presence of Sodium Sulphide

 3.1 Description of Behavior

 3.2 Nature of Hydrophobic Entity

 3.3 Surface Analysis and Sulphur-Extract

 3.4 Comparison between Self-Induced and Sodium Sulphide-Induced Collectorless Flotation

Chapter 4 Collector Flotation of Sulphide Minerals

 4.1 Pulp Potential Dependence of Collector Flotation and Hydrophobic Entity

  4.1.1 Copper Sulphide Minerals

4.1.2 Lead Sulphide Minerals

  4.1.3 Zinc Sulphide Minerals

4.1.4 Iron Sulphide Minerals

 4.2 Eh-pH Diagrams for the Collector/Water/Mineral System

  4.2.1 Butyl Xanthate/Water System

  4.2.2 Chalcocite-Oxygen-Xanthate System

 4.3 Surface Analysis

4.3.1 UV Analysis of Collector Adsorption on Sulphide Minerals

  4.3.2 FTIR Analysis of Adsorption of Thio-Collectors on Sulphide Minerals

  4.3.3 XPS Analysis of Collector Adsorption on Sulphide Minerals

Chapter 5 Roles of Depressants in Flotation of Sulphide Minerals

 5.1 Electrochemical Depression by Hydroxyl Ion

  5.1.1 Depression of Galena and Pyrite

5.1.2 Depression of Jamesonite and Pyrrhotite

  5.1.3 Interfacial Structure of Mineral/Solution in Different pH Modifier Solution

 5.2 Depression by Hydrosulphide Ion

 5.3 Electrochemical Depression by Cyanide

 5.4 Depression by Hydrogen Peroxide

 5.5 Depression of Marmatite and Pyrrhotite by Thio-Organic Depressants

 5.6 Role of Polyhydroxyl and Poly Carboxylic Xanthate in the Flotation of Zinc-Iron Sulphide

5.6.1 Flotation Behavior of Zinc-Iron Sulphide with Polyhydroxyl and Polycarboxylic Xanthate as Depressants

5.6.2 Effect of Pulp Potential on the Flotation of Zinc-Iron Sulphide in the Presence of the Depressant

5.6.3 Adsorption of Polyhydroxyl and Polycarboxylic Xanthate on Zinc-Iron Sulphide

5.6.4 Effect of Polyhydroxyl and Polycarboxylic Xanthate on the Zeta Potential of Zinc-Iron Sulphide Minerals

5.6.5 Structure-Property Relation of Polyhydroxyl and Polycarboxylic Xanthate

Chapter 6 Electrochemistry of Activation Flotation of Sulphide Minerals

 6.1 Electrochemical Mechanism of Copper Activating Sphalerite

 6.2 Electrochemical Mechanism of Copper Activating Zinc-Iron Sulphide Minerals

6.2.1 Activation Flotation

6.2.2 Effect of Pulp Potential on Activation Flotation of Zinc-Iron Sulphide Minerals

6.2.3 Electrochemical Mechanism of Copper Activating Marmatite

6.2.4 Surface Analysis of Mechanism of Copper Activating Marmatite

 6.3 Activation of Copper Ion on Flotation of Zinc-Iron Sulphide Minerals in the Presence of Depressants

6.3.1 Effect of Depressant on the CuSO4 Activating Flotation of Zinc-Iron Sulphide Minerals

6.3.2 Influence of Pulp Potential on the Copper Ion Activating Flotation of Zinc-Iron Sulphide Minerals in the Presence of Depressant

6.3.3 Zeta Potential of Zinc-Iron Sulphide Minerals in the Presence of Flotation Reagents

 6.4 Surface Chemistry of Activation of Lime-Depressed Pyrite

6.4.1 Activation Flotation of Lime-Depressed Pyrite

6.4.2 Solution Chemistry Studies on Activation Flotation of Lime-Depressed Pyrite

6.4.3 The Bonding of the Activator Polar Group with Surface Cation

6.4.4 Surface Analysis of Lime-Depressed Pyrite in the Presence of Activator

Chapter 7 Corrosive Electrochemistry of Oxidation-Reduction of Sulphide Minerals

 7.1 Corrosive Electrochemistry

7.1.1 Concept and Significance of Mixed Potential, Corrosive Potential and Static Potential

7.1.2 The Concept of Corrosive Current and Corrosive Speed

7.1.3 The Corrosion Inhibitor, Inhibiting Corrosive Efficiency and Its Relationship with Collector Action

 7.2 Self-Corrosion of Sulphide Minerals

 7.3 Corrosive Electrochemistry on Surface Redox Reaction of Pyrite under Different Conditions

7.3.1 The Oxidation of Pyrite in NaOH Medium

7.3.2 Oxidation of Pyrite in Lime Medium

7.3.3 Corrosive Electrochemistry Study on Interactions betwee Collector and Pyrite

7.3.4 Interaction between Collector and Pyrite in High Alkaline Media

 7.4 Corrosive Electrochemistry on Surface Redox Reaction of Galena under Different Conditions

7.4.1 The Oxidation of Galena in NaOH Solution

7.4.2 The Effect of Lime on the Oxidation of Galena

7.4.3 Corrosive Electrochemistry Study on Interactions between Collector and Galena

7.4.4 Interactions between Collector and Galena at High pH

 7.5 Corrosive Electrochemistry on Surface Redox Reaction of Sphalerite in Different Media

7.5.1 Influence of Different pH Media on Sphalerite Oxidation

7.5.2 Inhibiting Corrosive Mechanism of Collector on Sphalerite Electrode

Chapter 8 Mechauo-Electrochemical Behavior of Flotation of Sulphide Minerals

 8.1 Experiment Equipment

 8.2 Mechano-Electrochemical Behavior of Pyrite in Different Grinding Media

 8.3 Mechano-Electrochemistry Process of Galena in Different Grinding Media

 8.4 Influence of Mechanical Force on the Electrode Process between Xanthate and Sulphide Minerals

 8.5 Surface Change of Sulphide Minerals under Mechanical Force

8.5.1 Surface Change of the Pyrite under Mechanical Force

8.5.2 Surface Change of Sphalerite in Mechanical Force

Chapter 9 Molecular Orbital and Energy Band Theory Approach of Electrochemical Flotation of Sulphide Minerals

 9.1 Qualitative Molecular Orbital and Band Models

 9.2 Density Functional Theory Research on Oxygen Adsorption on Pyrite (100) Surface

9.2.1 Computation Methods

9.2.2 Bulk FeS2 Properties

9.2.3 PropertyofFeS2 (100) Surface

9.2.4 Oxygen Adsorption

 9.3 Density Functional Theory Research on Activation of Sphalerite

9.3.1 Computational Methods

9.3.2 Bulk ZnS Properties

9.3.3 Relaxation and Properties of ZnS (110) Surface ,

9.3.4 Relaxation and Properties of ZnS (110) Surface Doped with Cu2+ and Fe2+

9.3.5 Effects of Doped Ions on Mixed Potential

 9.4 The Molecular Orbital and Energy Band Discussion of

Electrochemical Flotation Mechanism of Sulphide Minerals

9.4.1 Frontier Orbital of Collector and Oxygen

9.4.2 The Molecular Orbit and Energy Band Discussion of Collectorless Flotation of Galena and Pyrite

9.4.3 The Molecular Orbit and Energy Band Discussion of Collector Flotation of Galena and Pyrite

Chapter 10 Electrochemical Flotation Separation of Sulphide Minerals

 10.1 Technological Factors Affecting Potential Controlled Flotation Separation of Sulphide Ores

10.1.1 Potential Modifiers

10.1.2 pH Modifier

10.1.3 Frother

10.1.4 Conditioning Time

10.1.5 Surface Pretreatment

10.1.6 Grinding Environment

 10.2 Flotation Separation of Sulphide Minerals and Ores

10.2.1 Copper Sulphide Minerals and Ores

10.2.2 Lead-Zinc-Iron-Sulphide Minerals and Ores

 10.3 Applications of Potential Control Flotation in Industrial Practice

10.3.1 Original Potential in Grinding Process

10.3.2 Effect of Lime Dosage on "Original Potential".

10.3.3 Coupling with Other Flotation Process Factors

10.3.4 Coupling with Reagent Schemes

10.3.5 Coupling with Flotation Circuit

10.3.6 Applications of OPCF Technology in Several Flotation Concentrators

References

Index of Terms

Index of Scholars

标签
缩略图
书名 硫化矿浮选电化学(精)
副书名
原作名
作者 胡岳华//孙伟//王淀佐
译者
编者
绘者
出版社 清华大学出版社
商品编码(ISBN) 9787302188186
开本 16开
页数 304
版次 1
装订 精装
字数 458
出版时间 2009-03-01
首版时间 2009-03-01
印刷时间 2009-03-01
正文语种
读者对象 青年(14-20岁),研究人员,普通成人
适用范围
发行范围 公开发行
发行模式 实体书
首发网站
连载网址
图书大类 生活休闲-旅游地图-地图
图书小类
重量 0.618
CIP核字
中图分类号 P578.2
丛书名
印张 20
印次 1
出版地 北京
242
162
22
整理
媒质 图书
用纸 普通纸
是否注音
影印版本 原版
出版商国别 CN
是否套装 单册
著作权合同登记号
版权提供者
定价
印数 700
出品方
作品荣誉
主角
配角
其他角色
一句话简介
立意
作品视角
所属系列
文章进度
内容简介
作者简介
目录
文摘
安全警示 适度休息有益身心健康,请勿长期沉迷于阅读小说。
随便看

 

兰台网图书档案馆全面收录古今中外各种图书,详细介绍图书的基本信息及目录、摘要等图书资料。

 

Copyright © 2004-2025 xlantai.com All Rights Reserved
更新时间:2025/5/8 5:52:46