王见勇编著的《局部p-凸空间引论》是关于局部p-凸(0<p≤1)空间理论的专著。p-凸分析是非线性泛函分析中的一个重要分支,与凸分析一样,具有可以预见的广泛应用前景。《局部p-凸空间引论》可作为基础数学与应用数学以及相关专业的研究生、本科生与数学工作者的教材或参考书。
图书 | 局部p-凸空间引论 |
内容 | 编辑推荐 王见勇编著的《局部p-凸空间引论》是关于局部p-凸(0<p≤1)空间理论的专著。p-凸分析是非线性泛函分析中的一个重要分支,与凸分析一样,具有可以预见的广泛应用前景。《局部p-凸空间引论》可作为基础数学与应用数学以及相关专业的研究生、本科生与数学工作者的教材或参考书。 内容推荐 王见勇编著的《局部p-凸空间引论》是关于局部p-凸(0<p≤1)空间理论的专著。全书共分七章和一个附录。在总结经典成果的基础上,本书用共轭锥取代可能平凡的共轭空间,借助(赋范)拓扑锥建立局部p-凸空间理论。第1章简介拓扑线性空间与贼准范空间基础。第2~5章是本书的主体,主要介绍p。凸集与p-凸泛函、局部p-凸空间与其共轭锥的构造和性质以及二者的相互决定关系等,其中分离定理、Hahn。Brdnach延拓定理、局部有界定理与一致有界定理构成p-凸分析的四大基本定理。第6,7两章是对基本理论的应用与提升,分别研究Lebesgue空间Lp,lp与Hardy空间Hp的局部(q-)凸性,给出其共轭锥的次表示定理。附录介绍一个新颖有趣的课题——集合与泛函的积分凸性,以满足部分读者的广泛阅读兴趣。 p-凸分析是非线性泛函分析中的一个重要分支,与凸分析一样,具有可以预见的广泛应用前景。《局部p-凸空间引论》可作为基础数学与应用数学以及相关专业的研究生、本科生与数学工作者的教材或参考书。 目录 前言 符号说明 第1章 拓扑线性空间与赋准范空间 1.1 拓扑线性空间 1.2 度量线性空间与赋准范空间 1.3 赋准范空间的例子 1.4 开映射定理与闭图像定理 1.5 评注与参考资料 第2章 P-凸集与p-凸泛函 2.1 线性空间中集合的p-凸性 2.2 拓扑线性空间中的p-凸集 2.3 p-凸泛函 2.4 评注与参考资料 第3章 局部p-凸空间 3.1 局部p-凸空间 3.2 局部p-凸空间的运算性质 3.3 局部p-凸空间中的分离定理与Krein—Milman定理 3.4 局部p-凸空间中的Hahn—Banach定理 3.5 评注与参考资料 第4章 局部有界空间 4.1 有界集合 4.2 局部有界空间 4.2.1 集合凹性模 4.2.2 空间凹性模 4.2.3 局部有界空间的可赋p-范性 4.3 局部有界万有空间 4.3.1 赋p-范空间lp的充分大性 4.3.2 可分赋p-范空间类Sp的万有空间 4.4 局部拟凸空间 4.4.1 局部拟凸空间 4.4.2 可分局部拟p-凸空间族的万有空间 4.5 Orlicz空间的局部有界性 4.6 评注与参考资料 第5章 拓扑锥与局部p-凸空间的共轭锥 5.1 凸锥 5.2 拟平移不变拓扑锥与局部生成拓扑锥 5.3 赋范拓扑锥 5.4 共轭锥(Xp,UA)与(Xn,lI11) 5.5 共轭锥Xp中的一致有界定理 5.6 评注与参考资料 第6章 Lebesgue空间zp与Lp(u)(0<p≤1) 6.1 lp与Lp(u)的局部凸性 6.1.1 Lp(u)与lp的局部凸性 6.1.2 lp的共轭空间的表示定理(0≤p<1) 6.1.3 真闭弱稠子空间的存在性 6.2 lp与Lp(u)的局部q-凸性 6.3 实空间lp与Lp(u)的共轭锥的次表示定理 6.3.1 实数列空间lp的共轭锥的次表示定理 6.3.2 空间lp的q-共轭锥(lp)q的次表示定理 6.3.3 实函数空间Lp(u)的共轭锥的次表示定理 6.4 lp(x)与Lp(u,x)的共轭锥的次表示定理 6.4.1 向量值序列空间lp(x)的共轭锥的次表示定理 6.4.2 向量值函数空间Lp(u,x)的共轭锥的次表示定理 6.5 评注与参考资料 第7章 Hardy空间 7.1 Hp的基本构造与性质 7.1.1 边界值函数 7.1.2 Blaschke分解 7.1.3 平均收敛到边界值函数 7.1.4 Hp到Lp(T)的嵌入 7.2 Hp(0<p<1)的非局部凸性 7.3 Hp(1≤p<∞)的共轭空间的表示定理 7.3.1 零化子 7.3.2 Hp(1≤p<∞)的共轭空间的表示定理 7.4 Hp(0<p≤1)的共轭锥的次表示定理 7.5 评注与参考资料 附录 积分凸性及其应用 A.1 积分凸性的定义 A.2 集合的∫-凸性 A.3 泛函的∫-凸性 A.4 ∫-端点定理及其应用 参考文献 索引 |
标签 | |
缩略图 | ![]() |
书名 | 局部p-凸空间引论 |
副书名 | |
原作名 | |
作者 | 王见勇 |
译者 | |
编者 | |
绘者 | |
出版社 | 科学出版社 |
商品编码(ISBN) | 9787030369758 |
开本 | 16开 |
页数 | 225 |
版次 | 1 |
装订 | 平装 |
字数 | 292 |
出版时间 | 2013-03-01 |
首版时间 | 2013-03-01 |
印刷时间 | 2013-03-01 |
正文语种 | 汉 |
读者对象 | 青年(14-20岁),普通成人 |
适用范围 | |
发行范围 | 公开发行 |
发行模式 | 实体书 |
首发网站 | |
连载网址 | |
图书大类 | 科学技术-自然科学-数学 |
图书小类 | |
重量 | 0.346 |
CIP核字 | |
中图分类号 | O177.3 |
丛书名 | |
印张 | 14.75 |
印次 | 1 |
出版地 | 北京 |
长 | 240 |
宽 | 170 |
高 | 10 |
整理 | |
媒质 | 图书 |
用纸 | 普通纸 |
是否注音 | 否 |
影印版本 | 原版 |
出版商国别 | CN |
是否套装 | 单册 |
著作权合同登记号 | |
版权提供者 | |
定价 | |
印数 | |
出品方 | |
作品荣誉 | |
主角 | |
配角 | |
其他角色 | |
一句话简介 | |
立意 | |
作品视角 | |
所属系列 | |
文章进度 | |
内容简介 | |
作者简介 | |
目录 | |
文摘 | |
安全警示 | 适度休息有益身心健康,请勿长期沉迷于阅读小说。 |
随便看 |
|
兰台网图书档案馆全面收录古今中外各种图书,详细介绍图书的基本信息及目录、摘要等图书资料。