群论是现代数学的一个分支,即抽象代数学(近世代数学)的一部分。群论也是用来描写物理世界对称性的一个非常有用的数学工具。
《物理学中的群论》为物理学中涉及的群论知识的简明教程,适合理工科各相关专业学生使用。全书介绍了群论的基本概念,讨论群的表示等内容。本书由吴基东编。
图书 | 物理学中的群论 |
内容 | 编辑推荐 群论是现代数学的一个分支,即抽象代数学(近世代数学)的一部分。群论也是用来描写物理世界对称性的一个非常有用的数学工具。 《物理学中的群论》为物理学中涉及的群论知识的简明教程,适合理工科各相关专业学生使用。全书介绍了群论的基本概念,讨论群的表示等内容。本书由吴基东编。 目录 preface chapter 1 introduction 1.1 particle on a one-dimensional lattice 1.2 representations of the discrete translation operators 1.3 physical consequences of translational symmetry 1.4 the representation functions and fourier analysis 1.5 symmetry groups of physics chapter 2 basic group theory 2.1 basic definitions and simple examples 2.2 further examples, subgroups 2.3 the rearrangement lemma and the symmetric (permutation) group 2.4 classes and invariant subgroups 2.5 cosets and factor (quotient) groups 2.6 homomorphisms 2.7 direct products problems chapter 3group representations 3.1 representations 3.2 irreducible, inequivalent representations 3.3 unitary representations 3.4 schur's lemmas 3.5 orthonormality and completeness relations of irreducible representation matrices 3.6 orthonormality and completeness relations of irreducible characters 3.7 the regular representation 3.8 direct product representations, clebsch-gordan coefficients problems chapter 4general properties of irreducible vectors and operators 4.1 irreducible basis vectors 4.2 the reduction of vectors——projection operators for irreducible components 4.3 irreducible operators and the wigner-eckart theorem problems chapter 5 representations of the symmetric groups 5.1 one-dimensional representations 5.2 partitions and young diagrams 5.3 symmetrizers and anti-symmetrizers of young tableaux 5.4 irreducible representations of sn 5.5 symmetry classes of tensors problems chapter 6 one-dimensional continuous groups 6.1 the rotation group so(2) 6.2 the generator of so(2) 6.3 irreducible representations of so(2) 6.4 invariant integration measure, orthonormality and completeness relations 6.5 multi-valued representations 6.6 continuous translational group in one dimension 6.7 conjugate basis vectors problems chapter 7 rotations in three-dimensional space——the group so(3) 7.1 description of the group so(3) 7.1.1 the angle-and-axis parameterization 7.1.2 the euler angles 7.2 one parameter subgroups, generators, and the lie algebra 7.3 irreducible representations of the so(3) lie algebra 7.4 properties of the rotational matrices dj(a, fl, 7) 7.5 application to particle in a central potential 7.5.1 characterization of states 7.5.2 asymptotic plane wave states 7.5.3 partial wave decomposition 7.5.4 summary 7.6 transformation properties of wave functions and operators 7.7 direct product representations and their reduction 7.8 irreducible tensors and the wigner-eckart theorem problems chapter 8the group su(2) and more about so(3) 8.1 the relationship between so(3) and su(2) 8.2 invariant integration 8.30rthonormality and completeness relations of dj 8.4 projection operators and their physical applications 8.4.1 single particle state with spill 8.4.2 two particle states with spin 8.4.3 partial wave expansion for two particle scattering with spin 8.5 differential equations satisfied by the dj-functions 8.6 group theoretical interpretation of spherical harmonics 8.6.1 transformation under rotation 8.6.2 addition theorem 8.6.3 decomposition of products of yim with the same arguments 8.6.4 recursion formulas 8.6.5 symmetry in m 8.6.60rthonormality and completeness 8.6.7 summary remarks 8.7 multipole radiation of the electromagnetic field problems chapter 9euclidean groups in two- and three-dimensional space 9.1 the euclidean group in two-dimensional space e2 9.2 unitary irreducible representations of e2——the angular-momentum basis 9.3 the induced representation method and the plane-wave basis 9.4 differential equations, recursion formulas,and addition theorem of the bessel function 9.5 group contraction——so(3) and e2 9.6 the euclidean group in three dimensions: e3 9.7 unitary irreducible representations of e3 by the induced representation method 9.8 angular momentum basis and the spherical bessel function problems chapter 10 the lorentz and poincarie groups, and space-time symmetries 10.1 the lorentz and poincare groups 10.1.1 homogeneous lorentz transformations 10.1.2 the proper lorentz group 10.1.3 decomposition of lorentz transformations 10.1.4 relation of the proper lorentz group to sl(2) 10.1.5 four-dimensional translations and the poincare group 10.2 generators and the lie algeebra 10.3 irreducible representations of the proper lorentz group 10.3.1 equivalence of the lie algebra to su(2) x su(2) 10.3.2 finite dimensional representations 10.3.3 unitary representations 10.4 unitary irreducible representations of the poincare group 10.4.1 null vector case (pu= 0) 10.4.2 time-like vector case (c1>3 0) 10.4.3 the second casimir operator 10.4.4 light-like case (c1 = 0) 10.4.5 space-like case (c1<0) 10.4.6 covariant normalization of basis states and integration measure 10.5 relation between representations of the lorentz and poincare groups-relativistic wave functions, fields, and wave equations 10.5.1 wave functions and field operators 10.5.2 relativistic wave equations and the plane wave expansion 10.5.3 the lorentz-poincare connection 10.5.4 "deriving" relativistic wave equations problems chapter 11 space inversion invariance 11.1 space inversion in two-dimensional euclidean space 11.1.i the group 0(2) 11.1.2 irreducible representations of 0(2) 11.1.3 the extended euclidean group e2 and its irreducible representations 11.2 space inversion in three-dimensional euclidean space 11.2.1 the group 0(3) and its irreducible representations 11.2.2 the extended euclidean group e3 and its irreducible representations 11.3 space inversion in four-dimensional minkowski space 11.3.1 the complete lorentz group and its irreducible representations 11.3.2 the extended poincare group and its irreducible representations 11.4 general physical consequences of space inversion 11.4.1 eigenstates of angular momentum and parity 11.4.2 scattering amplitudes and electromagnetic multipole transitions problems chapter 12 time reversal invariance 12.1 preliminary discussion 12.2 time reversal invariance in classical physics 12.3 problems with linear realization of timereversal transformation 12.4 the anti-unitary time reversal operator 12.5 irreducible representations of the full poincare group in the time-like case 12.6 irreducible representations in the light-like case (c1 = c2 = 0) 12.7 physical consequences of time reversal invariance 12.7.1 time reversal and angular momentum eigenstates 12.7.2 time-reversal symmetry of transition amplitudes 12.7.3 time reversal invariance and perturbation amplitudes problems chapter 13 finite-dimensional representations of the classical groups 13.1 gl(m): fundamental representations and the associated vector spaces 13.2 tensors in v x v, contraction, and gl(m) transformations 13.3 irreducible representations of gl(m) on thespace of general tensors 13.4 irreducible representations of other classical linear groups 13.4.1 unitary groups u(m) and u(m+, m_) 13.4.2 special linear groups sl(m) and special unitary groups su(m+, m_) 13.4.3 the real orthogonal group o(m+,m_; r) and the special real orthogonal group so(m +, m_; r) 13.5 concluding remarksproblems appendix inotations and symbols i.1 summation convention i.2 vectors and vector indices i.3 matrix indices appendix ii summary of linear vector spaces ii.1 linear vector space ii.2 linear transformations (operators) on vector spaces ii.3 matrix representation of linear operators ii.4 dual space, adjoint operators ii.5 inner (scalar) product and inner product space ii.6 linear transformations (operators) on inner product spaces appendix illgroup algebra and the reduction of regular representation iii. 1 group algebra 1ii.2 left ideals, projection operators iii.3 idempotents iii.4 complete reduction of the regular representation appendix ivsupplements to the theory of symmetric groups sn appependix vclebsch-gordan coefficients and spherical harmonics appendix virotational and lorentz spinors appendix viiunitary representations of the proper lorentz group appendix viii anti-linear operators references and bibliography index |
标签 | |
缩略图 | ![]() |
书名 | 物理学中的群论 |
副书名 | |
原作名 | |
作者 | (美)吴基东 |
译者 | |
编者 | |
绘者 | |
出版社 | 世界图书出版公司 |
商品编码(ISBN) | 9787510029554 |
开本 | 24开 |
页数 | 344 |
版次 | 1 |
装订 | 平装 |
字数 | |
出版时间 | 2011-01-01 |
首版时间 | 2011-01-01 |
印刷时间 | 2011-01-01 |
正文语种 | 英 |
读者对象 | 青年(14-20岁),研究人员,普通成人 |
适用范围 | |
发行范围 | 公开发行 |
发行模式 | 实体书 |
首发网站 | |
连载网址 | |
图书大类 | 科学技术-自然科学-物理 |
图书小类 | |
重量 | 0.444 |
CIP核字 | |
中图分类号 | O411.1 |
丛书名 | |
印张 | 15.5 |
印次 | 1 |
出版地 | 北京 |
长 | 224 |
宽 | 148 |
高 | 15 |
整理 | |
媒质 | 图书 |
用纸 | 普通纸 |
是否注音 | 否 |
影印版本 | 原版 |
出版商国别 | CN |
是否套装 | 单册 |
著作权合同登记号 | 图字01-2010-4895 |
版权提供者 | World Scientific Publishing Co. |
定价 | |
印数 | |
出品方 | |
作品荣誉 | |
主角 | |
配角 | |
其他角色 | |
一句话简介 | |
立意 | |
作品视角 | |
所属系列 | |
文章进度 | |
内容简介 | |
作者简介 | |
目录 | |
文摘 | |
安全警示 | 适度休息有益身心健康,请勿长期沉迷于阅读小说。 |
随便看 |
|
兰台网图书档案馆全面收录古今中外各种图书,详细介绍图书的基本信息及目录、摘要等图书资料。