图书 | 计算物理学(第2版)(英文版) |
内容 | 内容推荐 《计算物理学》(第2版)是一部很好规范的高等计算物理教科书。内容包括用于计算物理学中的重要算法的简洁描述。本书靠前部分介绍数值方法的基本理论,其中包含大量的习题和仿真实验。本书第2部分主要聚焦经典和量子系统的仿真等内容。读者对象:计算物理等相关专业的研究生。 目录 Part Ⅰ Numerical Methods 1 Error Analysis 1.1 Machine Numbers and Rounding Errors 1.2 Numerical Errors of Elementary Floating Point Operations 1.2.1 Numerical Extinction 1.2.2 Addition 1.2.3 Multiplication 1.3 Error Propagation 1.4 Stability of Iterative Algorithms 1.5 Example: Rotation 1.6 Truncation Error 1.7 Problems 2 Interpolation 2.1 Interpolating Functions 2.2 Polynomial Interpolation 2.2.1 Lagrange Polynomials 2.2.2 Barycentric Lagrange Interpolation 2.2.3 Newton's Divided Differences 2.2.4 Neville Method 2.2.5 Error of Polynomial Interpolation 2.3 Spline Interpolation 2.4 Rational Imerpolation 2.4.1 Pade Approximant 2.4.2 Barycentric Rational Interpolation 2.5 Multivariate Interpolation 2.6 Problems 3 Numerical Differentiahon 3.1 One—Sided Difference Quotient 3.2 Central Difference Quotient 3.3 Extrapolation Methods 3.4 Higher Derivatives 3.5 Partial Derivatives of Multivariate Functions 3.6 Problems 4 Numerical Integrahon 4.1 Equidistant Sample Points 4.1.1 Closed Newton—Cotes Formulae 4.1.2 Open Newton—Cotes Formulae 4.1.3 Composite Newton—Cotes Rules 4.1.4 Extrapolation Method (Romberg Integration) 4.2 Optimized Sample Points 4.2.1 Clenshaw—Curtis Expressions 4.2.2 Gaussian Integration 4.3 Problems 5 Systems of Inhomogeneous Linear Equations 5.1 Gaussian Elimination Method 5.1.1 Pivoting 5.1.2 Direct LU Decomposition 5.2 QR Decomposition 5.2.1 QR Decomposition by Orthogonalization 5.2.2 QR Decomposition hy Householder Reflections 5.3 Linear Equations wiih Tridiagonal Matrix 5.4 Cyclic Tridiagonal Systems 5.5 Iterative Solution of Inhomogeneous Linear Equations 5.5.1 General Relaxation Method 5.5.2 Jacobi Method 5.5.3 Gauss—Seidel Method 5.5.4 Damping and Successive Over—Relaxation 5.6 Conjugate Gradients 5.7 Matrix Inversion 5.8 Problems 6 Roots and Extremal Points 6.1 Root Finding 6.1.1 Bisection 6.1.2 Regula Falsi (False Position) Method 6.1.3 Newton—Raphson Method 6.1.4 Secant Method 6.1.5 Interpolation 6.1.6 Inverse Interpolation 6.1.7 Combined Methods 6.1.8 Multidimensional Root Finding 6.1.9 Quasi—Newton Methods 6.2 Function Minimization 6.2.1 TheTernary Search Method 6.2.2 The Golden Section Search Method (Brent's Method) 6.2.3 Minimization in Multidimensions 6.2.4 Steepest Descent Method 6.2.5 Conjugate Gradient Method 6.2.6 Newton—Raphson Method 6.2.7 Quasi—Newton Methods 6.3 Problems Fourier Transformation 7.1 Fourier Integral and Fourier Series 7.2 Discrete Fourier Transformauon 7.2.1 Trigonometric Interpolation 7.2.2 Real Valued Functions 7.2.3 Approximate Continuous Fourier Transformation 7.3 Fourier Transform Algorithms 7.3.1 Goertzel's Algorithm 7.3.2 Fast Fourier Transformation 7.4 Problems 8 Random Numbers and Monte Carlo Methods 8.1 Some Basic Statistics 8.1.1 Probability Density and Cumulative Probability Distribution 8.1.2 Histogram 8.1.3 Expectation Values and Moments 8.1.4 Example: Fair Die 8.1.5 Normal Distribution 8.1.6 Multivariate Distributions 8.1.7 Central Limit Theorem 8.1.8 Example: Binomial Distribution 8.1.9 Average of Repeated Measurements 8.2 Random Numbers 8.2.1 Linear Congruent Mapping 8.2.2 Marsaglia—Zamann Method 8.2.3 Random Numbers with Given Distribution 8.2.4 Examples 8.3 Monte Carlo Integration 8.3.1 Numerical Calculation of π 8.3.2 Calculation of an Integral 8.3.3 More General Random Numbers 8.4 Monte Carlo Method for Thermodynamic Averages 8.4.1 Simple Sampling 8.4.2 Importance Sampling 8.4.3 Metropolis Algorithm 8.5 Problems 9 Eigenvalue Problems 9.1 Direct Solution 9.2 Jacobi Method 9.3 Tridiagonal Matrices 9.3.1 Characteristic Polynomial of a Tridiagonal Matrix 9.3.2 Spe Tridiagonal Matrices 9.3.3 The QL Algorithm 9.4 Reduction to a Tridiagonal Matrix 9.5 Large Matrices 9.6 Problems 10 Data Fitting 10.1 LeastSquareFit 10.1.1 Linear Least Square Fit 10.1.2 Linear Least Square Fit with Orthogonalization 10.2 Singular Value Decomposition 10.2.1 Full Singular Value Decomposition 10.2.2 Reduced Singular Value Decomposition 10.2.3 Low Rank Matrix Approximation 10.2.4 Linear Least Square Fit with Singular Value Decomposition 10.3 Problems 11 Discretization of Differential Equations 11.1 Classification of Differential Equations 11.1.1 Linear Second Order PDE 11.1.2 Conservation Laws 11.2 Finite Differences 11.2.1 Finite Differences in Time 11.2.2 Stability Analysis 11.2.3 Method of Lines 11.2.4 Eigenvector Expansion 11.3 Finite Volumes 11.3.1 Discretization of fluxes 11.4 Weighted Residual Based Methods 11.4.1 Point Collocation Method 11.4.2 Sub—domain Method 11.4.3 Least Squares Method 11.4.4 Galerkin Method 11.5 Spectraland Pseudo—spectral Methods 11.5.1 Fourier Pseudo—spectral Methods 11.5.2 Example:Polynomial Approximation 11.6 Finite Elements 11.6.1 One—Dimensional Elements 11.6.2 Two—and Three—Dimensional Elements 11.6.3 One—Dimensional Galerkin FEM 11.7 Boundary Element Method 12 Equations of Motion 12.1 The State Vector 12.2 Time Evolution of the State Vector 12.3 Explicit Forward Euler Method 12.4 Implicit Backward Euler Method 12.5 Improved Euler Methods 12.6 Taylor Series Methods 12.6.1 Nordsieck Predictor—Corrector Method 12.6.2 Gear Predictor—Corrector Methods 12.7 Runge—Kutta Methods 12.7.1 Second Order Runge—Kutta Method 12.7.2 Third Order Runge—Kutta Method 12.7.3 Fourth Order Runge—Kutta Method 12.8 Quality Control and Adaptive Step Size Control 12.9 Extrapolation Methods 12.10 Linear Multistep Methods 12.10.1 Adams—Bashforth Methods 12.10.2 Adams—Moulton Methods 12.10.3 Backward Differentiation (Gear) Methods 12.10.4 Predictor—Corrector Methods 12.11 Verlet Methods 12.11.1 Liouville Equation 12.11.2 Split—Operator Approximation 12.11.3 Position Verlet Method 12.11.4 Velocity Verlet Method 12.11.5 Stormer—Verlet Method 12.11.6 Error Accumulation for the Stormer—Verlet Method 12.11.7 Beeman's Method 12.11.8 The Leapfrog Method 12.12 Problems …… Part Ⅱ Simulation of Classical and Quantum Systems Appendix Ⅰ Performing the Computer Experiments Appendix Ⅱ Methods and Algorithms References Index |
标签 | |
缩略图 | ![]() |
书名 | 计算物理学(第2版)(英文版) |
副书名 | |
原作名 | |
作者 | (德)P.O.J谢勒 |
译者 | |
编者 | |
绘者 | |
出版社 | 世界图书出版公司 |
商品编码(ISBN) | 9787519219635 |
开本 | 24开 |
页数 | 480 |
版次 | 1 |
装订 | 平装 |
字数 | 384 |
出版时间 | 2017-01-01 |
首版时间 | 2017-01 |
印刷时间 | 2017-01 |
正文语种 | 英 |
读者对象 | 本科及以上 |
适用范围 | |
发行范围 | 公开发行 |
发行模式 | 实体书 |
首发网站 | |
连载网址 | |
图书大类 | 科学技术-自然科学-物理 |
图书小类 | |
重量 | 578 |
CIP核字 | 2016255248 |
中图分类号 | O411.1 |
丛书名 | |
印张 | 20 |
印次 | 1 |
出版地 | 广东 |
长 | 224 |
宽 | 150 |
高 | 20 |
整理 | |
媒质 | 图书 |
用纸 | 普通纸 |
是否注音 | 否 |
影印版本 | 原版 |
出版商国别 | CN |
是否套装 | |
著作权合同登记号 | 01-2016-5271 |
版权提供者 | |
定价 | |
印数 | |
出品方 | |
作品荣誉 | |
主角 | |
配角 | |
其他角色 | |
一句话简介 | |
立意 | |
作品视角 | |
所属系列 | |
文章进度 | |
内容简介 | |
作者简介 | |
目录 | |
文摘 | |
安全警示 | 适度休息有益身心健康,请勿长期沉迷于阅读小说。 |
随便看 |
|
兰台网图书档案馆全面收录古今中外各种图书,详细介绍图书的基本信息及目录、摘要等图书资料。