首页  软件  游戏  图书  电影  电视剧

请输入您要查询的图书:

 

图书 计算机视觉实战 基于TensorFlow 2
内容
编辑推荐
计算机视觉解决方案日益普及,在医疗、汽车、社交媒体和机器人等领域取得了不错的进展。本书将帮助你了解全新版本的谷歌机器学习开源框架TensorFlow 2,你将掌握如何使用卷积神经网络(CNN)完成视觉任务。本书从计算机视觉和深度学习基础知识开始,教你如何从头开始构建神经网络。你将掌握一些让TensorFlow成为广泛使用的AI库的特性,以及直观的Keras接口,继而高效地构建、训练和部署CNN。通过具体的代码示例,本书展示了如何使用Inception和ResNet等现代神经网络分类图像,以及如何使用YOLO、Mask R-CNN和U-Net提取特定内容。本书还将介绍如何构建生成式对抗网络(GAN)和变分自编码器(VAE)来生成和编辑图像,以及如何使用LSTM分析视频。在此过程中,你将深入了解迁移学习、数据增强、域适应,以及移动设备和Web部署等高级知识以及其他关键概念。通过阅读本书,你将获得使用TensorFlow 2解决高级计算机视觉问题的理论知识和实际技能。
内容推荐
计算机视觉解决方案日益普及,在医疗、汽车、社交媒体和机器人等领域取得了不错的进展。
《计算机视觉实战:基于TensorFlow 2》将帮助你了解全新版本的谷歌机器学习开源框架TensorFlow 2,你将掌握如何使用卷积神经网络(CNN)完成视觉任务。
《计算机视觉实战:基于TensorFlow 2》从计算机视觉和深度学习基础知识开始,教你如何从头开始构建神经网络。你将掌握一些让TensorFlow成为广泛使用的Al库的特性,以及直观的Keras接口,继而高效地构建、训练和部署CNN。通过具体的代码示例,《计算机视觉实战:基于TensorFlow 2》展示了如何使用Inception和ResNet等现代神经网络分类图像,以及如何使用YOLO、MaskR-CNN和U-Net提取特定内容。《计算机视觉实战:基于TensorFlow 2》还将介绍如何构建生成式对抗网络(GAN)和变分自编码器(VAE)来生成和编辑图像,以及如何使用LSTM分析视频。在此过程中,你将深入了解迁移学习、数据增强、域适应,以及移动设备和Web部署等高级知识以及其他关键概念。
通过阅读《计算机视觉实战:基于TensorFlow 2》,你将获得使用TensorFlow 2解决高级计算机视觉问题的理论知识和实际技能。
通过阅读《计算机视觉实战:基于TensorFlow 2》,你将学到:
如何从头开始创建神经网络。
如何使用包括Inception和ResNet在内的现代神经网络架构进行图像分类。
如何使用YOLO、MaskR-CN
目录
译者序
前言
作者简介
审校者简介
第一部分 TensorFlow 2和应用于计算机视觉的深度学习
第1章 计算机视觉和神经网络
1.1 技术要求
1.2 广义计算机视觉
1.2.1 计算机视觉概述
1.2.2 主要任务及其应用
1.3 计算机视觉简史
1.3.1 迈出成功的第一步
1.3.2 深度学习的兴起
1.4 开始学习神经网络
1.4.1 建立神经网络
1.4.2 训练神经网络
1.5 本章小结
问题
进一步阅读
第2章 TensorFlow基础和模型训练
2.1 技术要求
2.2 TensorFlow 2和Keras入门
2.2.1 TensorFlow
2.2.2 基于Keras的简单计算机视觉模型
2.3 TensorFlow 2和Keras详述
2.3.1 核心概念
2.3.2 高级概念
2.4 TensorFlow生态系统
2.4.1 TensorBoard
2.4.2 TensorFlow插件和扩展
2.4.3 TensorFlowLite和TensorFlow.js
2.4.4 在何处运行模型
2.5 本章小结
问题
第3章 现代神经网络
3.1 技术要求
3.2 卷积神经网络
3.2.1 用于多维数据的神经网络
3.2.2 CNN操作
3.2.3 有效感受野
3.2.4 在TensorFlow中使用CNN
3.3 训练过程微调
3.3.1 现代网络优化器
3.3.2 正则化方法
3.4 本章小结
问题
进一步阅读
第二部分 优选的经典识别问题解决方案
第4章 主流分类工具
4.1 技术要求
4.2 了解高级CNN架构
4.2.1 VGG:CNN的标准架构
4.2.2 GoogLeNet和Inception模块
4.2.3 ResNet:残差网络
4.3 利用迁移学习
4.3.1 概述
4.3.2 基于TensorFlow和Keras的迁移学习
4.4 本章小结
问题
进一步阅读
第5章 目标检测模型
5.1 技术要求
5.2 目标检测介绍
5.2.1 背景
5.2.2 模型的性能评价
5.3 YOLO:快速目标检测算法
5.3.1 YOLO介绍
5.3.2 使用YOLO推理
……
第三部分 高级概念和计算机视觉新进展
附录
参考文献
问题答案
标签
缩略图
书名 计算机视觉实战 基于TensorFlow 2
副书名
原作名
作者 (法)本杰明·普朗什,(法)艾略特·安德烈斯
译者
编者
绘者
出版社 机械工业出版社
商品编码(ISBN) 9787111688471
开本 16开
页数 252
版次 1
装订
字数
出版时间 2021-08-01
首版时间
印刷时间 2021-08-01
正文语种
读者对象
适用范围
发行范围
发行模式 实体书
首发网站
连载网址
图书大类 教育考试-考试-计算机类
图书小类
重量
CIP核字
中图分类号 TP311.561
丛书名
印张
印次 1
出版地
整理
媒质
用纸
是否注音
影印版本
出版商国别
是否套装
著作权合同登记号
版权提供者
定价
印数
出品方
作品荣誉
主角
配角
其他角色
一句话简介
立意
作品视角
所属系列
文章进度
内容简介
作者简介
目录
文摘
安全警示 适度休息有益身心健康,请勿长期沉迷于阅读小说。
随便看

 

兰台网图书档案馆全面收录古今中外各种图书,详细介绍图书的基本信息及目录、摘要等图书资料。

 

Copyright © 2004-2025 xlantai.com All Rights Reserved
更新时间:2025/5/5 13:46:43