首页  软件  游戏  图书  电影  电视剧

请输入您要查询的图书:

 

图书 代数几何(ⅤFano簇影印版)(精)/国外数学名著系列
内容
编辑推荐

The aim of this survey, written by V. A. lskovskikh and Yu. G.Prokhorov, is to provide an exposition of the structure theory of Fano varieties, i.e. algebraic varieties with an ample anticanonical divisor.Such varieties naturally appear in the birational classification of varieties of negative Kodaira dimension, and they are very close to rational ones.

内容推荐

The aim of this survey, written by V. A. lskovskikh and Yu. G.Prokhorov, is to provide an exposition of the structure theory of Fano varieties, i.e. algebraic varieties with an ample anticanonical divisor.Such varieties naturally appear in the birational classification of varieties of negative Kodaira dimension, and they are very close to rational ones. This EMS volume covers different approaches to the classification of Fano varieties such as the classical Fanolskovskikh"double projection"method and its modifications,the vector bundles method due to S. Mukai, and the method of extremal rays. The authors discuss uniruledness and rational connectedness as well as recent progress in rationality problems of Fano varieties. The appendix contains tables of some classes of Fano varieties.

This book will be very useful as a reference and research guide for researchers and graduate students in algebraic geometry.

目录

Introduction

Chapter 1. Preliminaries

 1.1. Singularities

 1.2. On Numerical Geometry of Cycles

 1.3. On the Mori Minimal Model Program

 1.4. Results on Minimal Models in Dimension Three

Chapter 2. Basic Properties of Fano Varieties

 2.1. Definitions, Examples and the Simplest Properties

 2.2. Some General Results

 2.3. Existence of Good Divisors in the Fundamental Linear System

 2.4. Base Points in the Fundamental Linear System

Chapter 3. Del Pezzo Varieties and Fano Varieties of Large Index

 3.1. On Some Preliminary Results of Fujita

 3.2. Del Pezzo Varieties. Definition and Preliminary Results

 3.3. Nonsingular del Pezzo Varieties. Statement of the Main Theorem and Beginning of the Proof

 3.4. Del Pezzo Varieties with Picard Number p = 1.

 Continuation of the Proof of the Main Theorem

 3.5. Del Pezzo Varieties with Picard Number p ≥ 2.

 Conclusion of the Proof of the Main Theorem

Chapter 4. Fano Threefolds with p = 1

 4.1. Elementary Rational Maps: Preliminary Results

 4.2. Families of Lines and Conics on Fano Threefolds

 4.3. Elementary Rational Maps with Center along a Line

 4.4. Elementary Rational Maps with Center along a Conic

 4.5. Elementary Rational Maps with Center at a Point

 4.6. Some Other Rational Maps

Chapter 5. Fano Varieties of Coindex 3 with p = 1:

The Vector Bundle Method

 5.1. Fano Threefolds of Genus 6 and 8: Gushel's Approach

 5.2. A Review of Mukai's Results on the Classification of Fano Manifolds of Coindex 3

Chapter 6. Boundedness and Rational Connectedness of Fano Varieties

 6.1. Uniruledness

 6.2. Rational Connectedness of Fano Varieties

Chapter 7. Fano Varieties with p ≥ 2

 7.1. Fano Threefolds with Picard Number p ≥ 2 (Survey of Results of Mori and Mukai

 7.2. A Survey of Results about Higher-dimensional Fano Varieties with Picard Number p ≥ 2

Chapter 8. Rationality Questions for Fano Varieties I

 8.1. Intermediate Jacobian and Prym Varieties

 8.2. Intermediate Jacobian: the Abel-Jacobi Map

 8.3. The Brauer Group as a Birational Invariant

Chapter 9. Rationality Questions for Fano Varieties II

 9.1. Birational Automorphisms of Fano Varieties

 9.2. Decomposition of Birational Maps in the Context of Mori Theory

Chapter 10. Some General Constructions of Rationality and Unirationality

 10.1. Some Constructions of Unirationality

 10.2. Unirationality of Complete Intersections

 10.3. Some General Constructions of Rationality

Chapter 11. Some Particular Results and Open Problems

 11.1. On the Classification of Three-dimensional  -Fano Varieties

 11.2. Generalizations

 11.3. Some Particular Results

 11.4. Some Open Problems

Chapter 12. Appendix: Tables

 12.1. Del Pezzo Manifolds

 12.2. Fano Threefolds with p = 1

 12.3. Fano Threefolds with p = 2

 12.4. Fano Threefolds with p = 3

 12.5. Fano Threefolds with p = 4

 12.6. Fano Threefolds with p ≥ 5

 12.7. Fano Fourfolds of Index 2 with p ≥ 2

 12.8. Toric Fano Threefolds

References

Index

标签
缩略图
书名 代数几何(ⅤFano簇影印版)(精)/国外数学名著系列
副书名
原作名
作者 (俄罗斯)帕尔申
译者
编者
绘者
出版社 科学出版社
商品编码(ISBN) 9787030234896
开本 16开
页数 247
版次 1
装订 精装
字数 311
出版时间 2009-01-01
首版时间 2009-01-01
印刷时间 2009-01-01
正文语种
读者对象 青年(14-20岁),研究人员,普通成人
适用范围
发行范围 公开发行
发行模式 实体书
首发网站
连载网址
图书大类 科学技术-自然科学-数学
图书小类
重量 0.548
CIP核字
中图分类号 O187
丛书名
印张 16.25
印次 1
出版地 北京
246
175
18
整理
媒质 图书
用纸 普通纸
是否注音
影印版本 原版
出版商国别 CN
是否套装 单册
著作权合同登记号 图字01-2008-5461
版权提供者 德国施普林格出版公司
定价
印数 2000
出品方
作品荣誉
主角
配角
其他角色
一句话简介
立意
作品视角
所属系列
文章进度
内容简介
作者简介
目录
文摘
安全警示 适度休息有益身心健康,请勿长期沉迷于阅读小说。
随便看

 

兰台网图书档案馆全面收录古今中外各种图书,详细介绍图书的基本信息及目录、摘要等图书资料。

 

Copyright © 2004-2025 xlantai.com All Rights Reserved
更新时间:2025/5/19 18:27:53