肓信号处理是现代数学信号处理、计算智能学近年来迅速发展的重要方向,在电子信息、通信、生物医学、图像增强、雷达、地球物理信号处理等众多领域有广泛的应用前景。史习智编著的这本《盲信号处理——理论与实践》较系统地介绍了盲信号处理的基本理论、数学描述、独立分量分析、非线性PCA、非线性ICA、卷积混合和盲解卷积、盲信号处理的扩展、数据分析和应用研究等。本书可作为作为高年级本科生、研究生的教材,也可作为电子信息、通信、图像处理、遥感、雷达、生物医学信号处理、地震、语言信号处理等相关领域科技人员的参考书。
图书 | 盲信号处理--理论与实践(精) |
内容 | 编辑推荐 肓信号处理是现代数学信号处理、计算智能学近年来迅速发展的重要方向,在电子信息、通信、生物医学、图像增强、雷达、地球物理信号处理等众多领域有广泛的应用前景。史习智编著的这本《盲信号处理——理论与实践》较系统地介绍了盲信号处理的基本理论、数学描述、独立分量分析、非线性PCA、非线性ICA、卷积混合和盲解卷积、盲信号处理的扩展、数据分析和应用研究等。本书可作为作为高年级本科生、研究生的教材,也可作为电子信息、通信、图像处理、遥感、雷达、生物医学信号处理、地震、语言信号处理等相关领域科技人员的参考书。 内容推荐 Blind Signal Processing Theory and Practice not only introduces related fundamental mathematics, but also reflects the numerous advances in the field, such as probability density estimation-based processing algorithms,underdetermined models, complex value methods, uncertainty of order in the separation of convolutive mixtures in frequency domains, and feature extraction using Independent Component Analysis (ICA). At the end of the book, results from a study conducted at Shanghai Jiao Tong University in the areas of speech signal processing, underwater signals, image feature extraction, data compression, and the like are discussed. This book will be of particular interest to advanced undergraduate students,graduate students, university instructors and research scientists in related disciplines. Xizhi Shi is a Professor at Shanghai Jiao Tong University. 目录 Chapter 1 Introduction 1.1 Introduction 1.2 Blind Source Separation 1.3 Independent Component Analysis (ICA) 1.4 The Historical Development and Research Prospect of Blind Signal Processing References Chapter 2 Mathematical Description of Blind Signal Processing 2.1 Random Process and Probability Distribution 2.2 Estimation Theory 2.3 Information Theory 2.4 Higher-Order Statistics 2.5 Preprocessing of Signal 2.6 Complex Nonlinear Function 2.7 Evaluation Index References Chapter 3 Independent Component Analysis 3.1 Problem Statement and Assumptions 3.2 Contrast Functions 3.3 Information Maximization Method of ICA 3.4 Maximum Likelihood Method and Common Learning Rule 3.5 FastICA Algorithm 3.6 Natural Gradient Method 3.7 Hidden Markov Independent Component Analysis References Chapter 4 Nonlinear PCA & Feature Extraction 4.1 Principal Component Analysis & Infinitesimal Analysis 4.2 Nonlinear PCA and Blind Source Separation 4.3 Kernel PCA 4.4 Neural Networks Method of Nonlinear PCA and Nonlinear Complex PCA References Chapter 5 Nonlinear ICA 5.1 Nonlinear Model and Source Separation 5.2 Learning Algorithm 5.3 Extended Gaussianization Method of Post Nonlinear Blind Separation 5.4 Neural Network Method for Nonlinear ICA 5.5 Genetic Algorithm of Nonlinear ICA Solution 5.6 Application Examples of Nonlinear ICA References Chapter 6 Convolutive Mixtures and Blind Deconvolution 6.1 Description of Issues 6.2 Convolutive Mixtures in Time-Domain 6.3 Convolutive Mixtures Algorithms in Frequency-Domain 6.4 Frequency-Domain Blind Separation of Speech Convolutive Mixtures 6.5 Bussgang Method 6.6 Multi-channel Blind Deconvolution References Chapter 7 Blind Processing Algorithm Based on Probability Density Estimation 7.1 Advancing the Problem 7.2 Nonparametric Estimation of Probability Density Function 7.3 Estimation of Evaluation Function 7.4 Blind Separation Algorithm Based on Probability Density Estimation 7.5 Probability Density Estimation of Gaussian Mixtures Model 7.6 Blind Deconvolution Algorithm Based on Probability Density Function Estimation 7.7 On-line Algorithm of Nonparametric Density Estimation References Chapter 8 Joint Approximate Diagonalization Method 8.1 Introduction 8.2 JAD Algorithm of Frequency-Domain Feature 8.3 JAD Algorithm of Time-Frequency Feature 8.4 Joint Approximate Block Diagonalization Algorithm of Convolutive Mixtures 8.5 JAD Method Based on Cayley Transformation 8.6 Joint Diagonalization and Joint Non-Diagonalization Method 8.7 Nonparametric Density Estimating Separating Method Based on Time-Frequency Analysis References Chapter 9 Extension of Blind Signal Processing 9.1 Blind Signal Extraction 9.2 From Projection Pursuit Technology to Nonparametric Density Estimation-Based ICA 9.3 Second-Order Statistics Based Convolutive Mixtures Separation Algorithm 9.4 Blind Separation for Fewer Sensors than Sources--Underdetermined Model 9.5 FastlCA Separation Algorithm of Complex Numbers in Convolutive Mixtures 9.6 On-line Complex ICA Algorithm Based on Uncorrelated Characteristics of Complex Vectors 9.7 ICA-Based Wigner-Ville Distribution 9.8 ICA Feature Extraction 9.9 Constrained ICA 9.10 Particle Filtering Based Nonlinear and Noisy ICA References Chapter 10 Data Analysis and Application Study 10.1 Target Enhancement in Active Sonar Detection 10.2 ECG Artifacts Rejection in EEG with ICA 10.3 Experiment on Underdetermined Blind Separation of A Speech Signal 10.4 ICA in Human Face Recognition 10.5 ICAin Data Compression 10.6 Independent Component Analysis for Functional MRI Data Analysis 10.7 Speech Separation for Automatic Speech Recognition System 10.8 Independent Component Analysis of Microarray Gene Expression Data in the Study of Alzheimer's Disease (AD) References Index |
标签 | |
缩略图 | ![]() |
书名 | 盲信号处理--理论与实践(精) |
副书名 | |
原作名 | |
作者 | 史习智 |
译者 | |
编者 | |
绘者 | |
出版社 | 上海交通大学出版社 |
商品编码(ISBN) | 9787313058201 |
开本 | 16开 |
页数 | 368 |
版次 | 1 |
装订 | 精装 |
字数 | 450 |
出版时间 | 2011-01-01 |
首版时间 | 2011-01-01 |
印刷时间 | 2011-01-01 |
正文语种 | 汉 |
读者对象 | 青年(14-20岁),研究人员,普通成人 |
适用范围 | |
发行范围 | 公开发行 |
发行模式 | 实体书 |
首发网站 | |
连载网址 | |
图书大类 | 科学技术-工业科技-电子通讯 |
图书小类 | |
重量 | 0.804 |
CIP核字 | |
中图分类号 | TN911.7 |
丛书名 | |
印张 | 24 |
印次 | 1 |
出版地 | 上海 |
长 | 241 |
宽 | 165 |
高 | 30 |
整理 | |
媒质 | 图书 |
用纸 | 普通纸 |
是否注音 | 否 |
影印版本 | 原版 |
出版商国别 | CN |
是否套装 | 单册 |
著作权合同登记号 | |
版权提供者 | |
定价 | |
印数 | |
出品方 | |
作品荣誉 | |
主角 | |
配角 | |
其他角色 | |
一句话简介 | |
立意 | |
作品视角 | |
所属系列 | |
文章进度 | |
内容简介 | |
作者简介 | |
目录 | |
文摘 | |
安全警示 | 适度休息有益身心健康,请勿长期沉迷于阅读小说。 |
随便看 |
|
兰台网图书档案馆全面收录古今中外各种图书,详细介绍图书的基本信息及目录、摘要等图书资料。